MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

被引:0
|
作者
Alonso Alvarez, Jose N. [1 ]
Fernandez Vilaboa, Jose M. [2 ]
Gonzalez Rodriguez, Ramon [3 ]
机构
[1] Univ Vigo, Dept Matemat, Campus Univ Lagoas Marcosende, E-36280 Vigo, Spain
[2] Univ Santiago de Compostela, Dept Matemat, E-15771 Santiago De Compostela, Spain
[3] Univ Vigo, Dept Matemat Aplicada 2, Campus Univ Lagoas Marcosende, E-36310 Vigo, Spain
关键词
Monoidal category; monoidal functor; Hopf (co)quasigroup; (strong) Galois object; Galois group; group-like element; invertible object; Picard group; MODULES;
D O I
10.4134/JKMS.j200069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic((H)Mod) congruent to Pic(C)circle plus G(H*) where Pic((H)Mod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H*) the group of group-like morphisms of the dual of H.
引用
收藏
页码:351 / 381
页数:31
相关论文
共 50 条
  • [31] Hopf monads on monoidal categories
    Bruguieres, Alain
    Lack, Steve
    Virelizier, Alexis
    ADVANCES IN MATHEMATICS, 2011, 227 (02) : 745 - 800
  • [32] Exact sequences of Witt groups
    Grenier-Boley, N
    Mahmoudi, MG
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (04) : 965 - 986
  • [33] BRAIDED MONOIDAL CATEGORIES AND DOI-HOPF MODULES FOR MONOIDAL HOM-HOPF ALGEBRAS
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 79 - 103
  • [34] Monoidal bicategories and Hopf algebroids
    Day, B
    Street, R
    ADVANCES IN MATHEMATICS, 1997, 129 (01) : 99 - 157
  • [35] Monoidal functors, acyclic models and chain operads
    Santos, E. Guillen
    Navarro, V.
    Pascual, P.
    Roig, Agusti
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02): : 348 - 378
  • [36] Container Combinatorics: Monads and Lax Monoidal Functors
    Uustalu, Tarmo
    TOPICS IN THEORETICAL COMPUTER SCIENCE, TTCS 2017, 2017, 10608 : 91 - 105
  • [37] RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS
    Tonini, Fabio
    TRANSFORMATION GROUPS, 2017, 22 (03) : 845 - 868
  • [38] RAMIFIED GALOIS COVERS VIA MONOIDAL FUNCTORS
    FABIO TONINI
    Transformation Groups, 2017, 22 : 845 - 868
  • [39] A Characterization of Weak Hopf (co) Quasigroups
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3747 - 3764
  • [40] A Characterization of Weak Hopf (co) Quasigroups
    J. N. Alonso Álvarez
    J. M. Fernández Vilaboa
    R. González Rodríguez
    Mediterranean Journal of Mathematics, 2016, 13 : 3747 - 3764