Grain-Controlled Gadolinia-Doped Ceria (GDC) Functional Layer for Interface Reaction Enhanced Low-Temperature Solid Oxide Fuel Cells

被引:11
|
作者
Hong, Soonwook [1 ]
Yang, Hwichul [2 ]
Lim, Yonghyun [2 ]
Prinz, Fritz B. [1 ]
Kim, Young-Beom [2 ,3 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Hanyang Univ, Dept Mech Convergence Engn, 222 Wangsimni Ro, Seoul 133791, South Korea
[3] Hanyang Univ, Inst Nanosci & Technol, 222 Wangsimni Ro, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
gadolinia-doped ceria (GDC); grain-controlled layer (GCL); low-temperature solid oxide fuel cell; thin-film electrolyte; oxygen reduction reaction; YTTRIA-STABILIZED ZIRCONIA; ELECTRICAL-PROPERTIES; THIN-FILMS; ELECTROLYTE; DEPOSITION; FABRICATION; MICROSTRUCTURE; BOUNDARIES; INTERLAYER; KINETICS;
D O I
10.1021/acsami.9b13999
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this Research Article, gadolinia-doped ceria (GDC), which is a highly catalyzed oxide ionic conductor, was explored to further improve oxygen surface reaction rates using a grain-controlled layer (GCL) concept. Typically, GDC materials have been used as a cathode functional layer by coating the GDC between the electrode and electrolyte to accelerate the oxygen reduction reaction (ORR). To further improve the oxygen surface kinetics of the GDC cathodic layer, we modified the grain boundary density and crystallinity developed in the GDC layer by adjusting RF power conditions during the sputtering process. This approach revealed that engineered nanograins of GDC thin films directly affected ORR kinetics by catalyzing the oxygen surface reaction rate, significantly enhancing the fuel cell performance. Using this innovative concept, the fuel cells fabricated with a GDC GCL demonstrated a peak power density of 240 mW/cm(2) at 450 degrees C.
引用
收藏
页码:41338 / 41346
页数:9
相关论文
共 50 条
  • [11] Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel
    Kellogg, Isaiah D.
    Koylu, Umit O.
    Dogan, Fatih
    JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7238 - 7242
  • [12] Effect of the thickness of sputtered gadolinia-doped ceria as a cathodic interlayer in solid oxide fuel cells
    Park, Taehyun
    Lee, Yoon Ho
    Cho, Gu Young
    Ji, Sanghoon
    Park, Joonho
    Chang, Ikwhang
    Cha, Suk Won
    THIN SOLID FILMS, 2015, 584 : 120 - 124
  • [13] Gadolinia-doped ceria barrier layer produced by sputtering and annealing for anode-supported solid oxide fuel cells
    Wu, Weiming
    Liu, Zhongbo
    Zhao, Zhe
    Zhang, Xiaomin
    Ou, Dingrong
    Tu, Baofeng
    Cui, Da'an
    Cheng, Mojie
    CHINESE JOURNAL OF CATALYSIS, 2014, 35 (08) : 1376 - 1384
  • [14] Bias-Assisted Sputtering of Gadolinia-Doped Ceria Interlayers for Solid Oxide Fuel Cells
    Fonseca, F. C.
    Uhlenbruck, S.
    Nedelec, R.
    Sebold, D.
    Buchkremer, H. P.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 2727 - 2734
  • [15] Microwave-assisted synthesis of gadolinia-doped ceria powders for solid oxide fuel cells
    Gondolini, A.
    Mercadelli, E.
    Sanson, A.
    Albonetti, S.
    Doubova, L.
    Boldrini, S.
    CERAMICS INTERNATIONAL, 2011, 37 (04) : 1423 - 1426
  • [16] Solid solution precursors to gadolinia-doped ceria prepared via a low-temperature solution route
    Go, Yong Bok
    Jacobson, Allan J.
    CHEMISTRY OF MATERIALS, 2007, 19 (19) : 4702 - 4709
  • [17] Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells
    Kim, Jun Woo
    Jang, Dong Young
    Kim, Manjin
    Choi, Hyung Jong
    Shim, Joon Hyung
    JOURNAL OF POWER SOURCES, 2016, 301 : 72 - 77
  • [18] Role of the gadolinia-doped ceria interlayer in high-performance intermediate-temperature solid oxide fuel cells
    Jung, Doh Won
    Kwak, Chan
    Seo, Sooyeon
    Moon, Kyoung-Seok
    Han, In-taek
    Kim, Ju Sik
    JOURNAL OF POWER SOURCES, 2017, 361 : 153 - 159
  • [19] Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells
    Fonseca, F. C.
    Uhlenbruck, S.
    Nedelec, R.
    Buchkremer, H. P.
    JOURNAL OF POWER SOURCES, 2010, 195 (06) : 1599 - 1604
  • [20] Electrolyte materials for solid oxide fuel cells derived from metal complexes: Gadolinia-doped ceria
    Veranitisagul, Chatchai
    Kaewvilai, Attaphon
    Wattanathana, Worawat
    Koonsaeng, Nattamon
    Traversa, Enrico
    Laobuthee, Apirat
    CERAMICS INTERNATIONAL, 2012, 38 (03) : 2403 - 2409