Integrated Risk Management for Newsvendors with Value-at-Risk Constraints

被引:37
|
作者
Kouvelis, Panos [1 ]
Li, Rong [2 ]
机构
[1] Washington Univ St Louis, Olin Business Sch, St Louis, MO 63130 USA
[2] Syracuse Univ, Whitman Sch Management, Syracuse, NY 13244 USA
关键词
inventory theory and control; risk management; OM-finance interface; DECISIONS; INVENTORY; POLICIES; PRICE;
D O I
10.1287/msom.2018.0726
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a newsvendor problem with profit risk control using value-at-risk (VaR) constraints. When a firm's demand correlates with the price of a tradable financial asset, both financial tools (derivatives) and operational tools (inventory) can be used for profit risk management. Such integrated risk management (IRM) approaches have been studied using various optimization frameworks to reflect the risk aversion of decision-makers. To the best of our knowledge, we are the first to study IRM in a newsvendor setting using profit maximization under VaR constraints. The VaR constraints allow for flexibility in the choice of profit target, V, and confidence level of achieving it, a. It is important to understand the implications of different (V, alpha) choices: some choices result in inventory decisions exhibiting risk aversion (and risk neutrality), whereas others result in inventory decisions exhibiting risk seeking. We demonstrate that without financial hedging, under the risk-averse (V, alpha) choices, the decision-maker has to sacrifice mean profit for risk control by stocking below the profit-maximizing (or the risk-neutral) inventory level. When financial hedging is available, however, the decision-maker can use it alone to control the profit risk, even when demand only partially correlates with the price of the financial asset used. Thus, inventory is solely used for profit maximization, and financial hedging is solely used for profit control. This separation of inventory and financial hedging decisions simplifies the IRM implementation. Such simplification however, is not the case under the mean-variance or expected utility frameworks. In these risk-averse frameworks, both inventory and financial hedging must combine to control risk control, and, thus, these two types of decisions are often highly interdependent. VaR constraints, often preferred by regulators, may be helpful in implementing IRM in many regulated industrial settings.
引用
收藏
页码:816 / 832
页数:17
相关论文
共 50 条
  • [41] Quantile Uncertainty and Value-at-Risk Model Risk
    Alexander, Carol
    Maria Sarabia, Jose
    RISK ANALYSIS, 2012, 32 (08) : 1293 - 1308
  • [42] A Value-at-Risk Analysis of Credit Risk in Romania
    Herghiligiu, Roxana
    INNOVATION VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOL I-VI, 2015, : 3070 - 3073
  • [43] Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk
    Sun, Lihua
    Hong, L. Jeff
    OPERATIONS RESEARCH LETTERS, 2010, 38 (04) : 246 - 251
  • [44] Value-at-risk in uncertain random risk analysis
    Liu, Yuhan
    Ralescu, Dan A.
    INFORMATION SCIENCES, 2017, 391 : 1 - 8
  • [45] Backtesting Parametric Value-at-Risk With Estimation Risk
    Escanciano, J. Carlos
    Olmo, Jose
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (01) : 36 - 51
  • [46] Portfolio selection based on a benchmark process with dynamic value-at-risk constraints
    Zhang, Qingye
    Gao, Yan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 440 - 447
  • [47] A Value-at-Risk framework for longevity trend risk
    Richards, Stephen
    BRITISH ACTUARIAL JOURNAL, 2014, 19 (01) : 140 - 156
  • [48] The application of Value-at-Risk in project risk measurement
    Feng, YJ
    Chen, AD
    PROCEEDINGS OF THE 2001 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING, VOLS I AND II, 2001, : 1747 - 1750
  • [49] Value relevance of value-at-risk disclosure
    Lim C.Y.
    Tan P.M.-S.
    Review of Quantitative Finance and Accounting, 2007, 29 (4) : 353 - 370
  • [50] Nonparametric estimation for risk in value-at-risk estimator
    Chang, YP
    Hung, MC
    Wu, YF
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (04) : 1041 - 1064