A discrete divergence-free basis for finite element methods

被引:17
|
作者
Ye, X
Hall, CA
机构
[1] Univ Pittsburgh, Dept Math & Stat, Pittsburgh, PA 15260 USA
[2] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
D O I
10.1023/A:1019159702198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The divergence-free finite element method (DFFEM) is a method to find an approximate solution of the Navier-Stokes equations in a divergence-free space. That is, the continuity equation is satisfied a priori. DFFEM eliminates the pressure from the calculations and significantly reduces the dimension of the system to be solved at each time step. For the standard 9-node velocity and 4-node pressure DFFEM, a basis for the weakly divergence-free subspace is constructed such that each basis function has nonzero support on at most 4 contiguous elements. Given this basis, weakly divergence-free macroelements are constructed.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [31] An iterative divergence-free immersed boundary method in the finite element framework for moving bodies
    Mao, Jia
    Zhao, Lanhao
    Liu, Xunnan
    Mu, Kailong
    COMPUTERS & FLUIDS, 2020, 208
  • [32] A DIVERGENCE-FREE STABILIZED FINITE ELEMENT METHOD FOR THE EVOLUTIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Novo, Julia
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3809 - A3836
  • [33] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [34] Remarks on multilevel bases for divergence-free finite elements
    Oswald, P
    NUMERICAL ALGORITHMS, 2001, 27 (02) : 131 - 152
  • [35] Remarks on Multilevel Bases for Divergence-Free Finite Elements
    P. Oswald
    Numerical Algorithms, 2001, 27 : 131 - 152
  • [36] On the P1 Powell-Sabin divergence-free finite element for the Stokes equations
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (03) : 456 - 470
  • [37] ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS
    Shangyou Zhang Department of Mathematical Sciences
    JournalofComputationalMathematics, 2008, 26 (03) : 456 - 470
  • [38] A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations
    Brenner, Susanne C.
    Li, Fengyan
    Sung, Li-Yeng
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 573 - 595
  • [39] An efficient construction of divergence-free spaces in the context of exact finite element de Rham sequences
    Devloo, Philippe R. B.
    Fernandes, Jeferson W. D.
    Gomes, Sonia M.
    Orlandini, Francisco T.
    Shauer, Nathan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [40] A Divergence-Free Petrov-Galerkin Immersed Finite Element Method for Stokes Interface Problem
    Zhu, Na
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)