A discrete divergence-free basis for finite element methods

被引:17
|
作者
Ye, X
Hall, CA
机构
[1] Univ Pittsburgh, Dept Math & Stat, Pittsburgh, PA 15260 USA
[2] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
D O I
10.1023/A:1019159702198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The divergence-free finite element method (DFFEM) is a method to find an approximate solution of the Navier-Stokes equations in a divergence-free space. That is, the continuity equation is satisfied a priori. DFFEM eliminates the pressure from the calculations and significantly reduces the dimension of the system to be solved at each time step. For the standard 9-node velocity and 4-node pressure DFFEM, a basis for the weakly divergence-free subspace is constructed such that each basis function has nonzero support on at most 4 contiguous elements. Given this basis, weakly divergence-free macroelements are constructed.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条
  • [1] A discrete divergence-free basis for finite element methods
    Xiu Ye
    Charles A. Hall
    Numerical Algorithms, 1997, 16 : 365 - 380
  • [2] Basis for high order divergence-free finite element spaces
    Rodriguez, A. Alonso
    Camano, J.
    De Los Santos, E.
    Rapetti, F.
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [3] Divergence-free cut finite element methods for Stokes flow
    Frachon, Thomas
    Nilsson, Erik
    Zahedi, Sara
    BIT NUMERICAL MATHEMATICS, 2024, 64 (04)
  • [4] Divergence-free tangential finite element methods for incompressible flows on surfaces
    Lederer, Philip L.
    Lehrenfeld, Christoph
    Schoeberl, Joachim
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (11) : 2503 - 2533
  • [5] Continuous interior penalty stabilization for divergence-free finite element methods
    Barrenechea, Gabriel R.
    Burman, Erik
    Caceres, Ernesto
    Guzman, Johnny
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 980 - 1002
  • [6] Multigrid techniques for a divergence-free finite element discretization
    Turek, S.
    East-West Journal of Numerical Mathematics, 1994, 2 (03): : 229 - 255
  • [7] Divergence-free finite element spaces for stress tensors
    Korotov, Sergey
    Krizek, Michal
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [8] THE MINIMAL SUPPORT DISCRETE DIVERGENCE-FREE BASIS FUNCTIONS FOR A MINIELEMENT
    YE, X
    ANDERSON, G
    APPLIED MATHEMATICS LETTERS, 1993, 6 (05) : 55 - 57
  • [9] Supercloseness of the Divergence-Free Finite Element Solutions on Rectangular Grids
    Huang Y.
    Zhang S.
    Communications in Mathematics and Statistics, 2013, 1 (2) : 143 - 162
  • [10] DIVERGENCE-FREE BASES FOR FINITE-ELEMENT SCHEMES IN HYDRODYNAMICS
    GUSTAFSON, K
    HARTMAN, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (04) : 697 - 721