Continuum quantum systems as limits of discrete quantum systems. IV. Affine canonical transforms

被引:3
|
作者
Barker, L [1 ]
机构
[1] Bilkent Univ, Dept Math, TR-06533 Ankara, Turkey
关键词
FINITE 2-DIMENSIONAL OSCILLATOR; COHERENT STATES; SCHWINGER; EVOLUTION; PEGG; TIME;
D O I
10.1063/1.1557331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Affine canonical transforms, complex-order Fourier transforms, and their associated coherent states appear in two scenarios: finite-discrete and continuum. We examine the relationship between the two scenarios, making systematic use of inductive limits, which were developed in the preceding articles in this series. (C) 2003 American Institute of Physics.
引用
收藏
页码:1535 / 1553
页数:19
相关论文
共 50 条
  • [21] DISCRETE ORTHOGONAL TRANSFORMS ON FUNDAMENTAL DOMAINS OF CANONICAL NUMBER SYSTEMS
    Chernov, V. M.
    Kasparyan, M. S.
    COMPUTER OPTICS, 2013, 37 (04) : 484 - 488
  • [22] Quantum geometry and quantum mechanics of integrable systems. II
    M. V. Karasev
    Russian Journal of Mathematical Physics, 2010, 17 : 207 - 217
  • [23] A canonical Hamiltonian for open quantum systems
    Hayden, Patrick
    Sorce, Jonathan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (22)
  • [24] The continuum limit of quantum spin systems
    Fearnhead, AM
    Hannabuss, KC
    ANNALS OF PHYSICS, 1999, 278 (02) : 178 - 201
  • [25] Dynamics of quantum systems embedded in a continuum
    Okolowicz, J
    Ploszajczak, M
    Rotter, I
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 374 (4-5): : 271 - 383
  • [26] Continuum limits of discrete systems without convexity hypotheses
    Braides, A
    Gelli, MS
    MATHEMATICS AND MECHANICS OF SOLIDS, 2002, 7 (01) : 41 - 66
  • [27] CHAOS AND THE CLASSICAL LIMIT OF QUANTUM SYSTEMS.
    Hogg, T.
    Huberman, B.A.
    Physica Scripta, 1984, 30 (04) : 225 - 227
  • [28] QUANTUM INTERFERENCE EFFECTS IN SUBMICRON SYSTEMS.
    Imry, Yoseph
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1987, 56 (06): : 969 - 970
  • [29] LOCALIZATION OF DYNAMICAL CHAOS IN QUANTUM SYSTEMS.
    Chirikov, B.V.
    Shepelyanskii, D.L.
    Radiophysics and quantum electronics, 1986, 29 (09) : 787 - 794
  • [30] NONLINEAR SUSCEPTIBILITY OF NONSYMMETRIC QUANTUM SYSTEMS.
    Demidov, E.V.
    Romanov, Yu.A.
    Radiophysics and quantum electronics, 1985, 28 (01) : 31 - 36