Approximation with Riemann-Liouville fractional derivatives

被引:0
|
作者
Anastassiou, George A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
关键词
Riemann-Liouville fractional derivative; positive sublinear operators; modulus of continuity; comonotonic operator; Choquet integral;
D O I
10.24193/subbmath.2019.3.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study quantitatively with rates the pointwise convergence of a sequence of positive sublinear operators to the unit operator over continuous functions. This takes place under low order smothness, less than one, of the approximated function and it is expressed via the left and right Riemann-Liouville fractional derivatives of it. The derived related inequalities in their right hand sides contain the moduli of continuity of these fractional derivatives and they are of Shisha-Mond type. We give applications to Bernstein Max-product operators and to positive sublinear comonotonic operators connecting them to Choquet integral.
引用
收藏
页码:357 / 365
页数:9
相关论文
共 50 条
  • [21] On Riemann-Liouville and Caputo Derivatives
    Li, Changpin
    Qian, Deliang
    Chen, YangQuan
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [22] Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators
    Berwal, Sahil
    Mohiuddine, S. A.
    Kajla, Arun
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8275 - 8288
  • [23] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [24] RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS
    Mei, Zhan-Dong
    Peng, Ji-Gen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [25] SOLUTION OF THE FRACTIONAL LIOUVILLE EQUATION BY USING RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES IN STATISTICAL MECHANICS
    Korichi, Z.
    Souigat, A.
    Bekhouche, R.
    Meftah, M. T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 336 - 345
  • [26] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Niyom, Somboon
    Ntouyas, Sotiris K.
    Laoprasittichok, Sorasak
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [27] Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives
    Zhang Yi
    CHINESE PHYSICS B, 2012, 21 (08)
  • [28] Perturbation of an abstract differential equation containing fractional Riemann-Liouville derivatives
    Kh. K. Avad
    A. V. Glushak
    Differential Equations, 2010, 46 : 867 - 881
  • [29] Riesz potential and Riemann-Liouville fractional integrals and derivatives of Jacobi polynomials
    Podlubny, I
    APPLIED MATHEMATICS LETTERS, 1997, 10 (01) : 103 - 108
  • [30] Perturbation of an Abstract Differential Equation Containing Fractional Riemann-Liouville Derivatives
    Avad, Kh. K.
    Glushak, A. V.
    DIFFERENTIAL EQUATIONS, 2010, 46 (06) : 867 - 881