R-matrix quantization of the elliptic Ruijs']jsenaars-Schneider model

被引:22
|
作者
Arutyunov, GE [1 ]
Chekhov, LO [1 ]
Frolov, SA [1 ]
机构
[1] VA Steklov Math Inst, Moscow 117966, Russia
关键词
D O I
10.1007/s002200050303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the classical L-operator algebra of the elliptic Ruijsenaars-Schneider model can be realized as a subalgebra of the algebra of functions on the cotangent bundle over the centrally extended current group in two dimensions. It is governed by two dynamical r and (r) over bar-matrices satisfying a closed system of equations. The corresponding quantum R and R-matrices are found as solutions to quantum analogs of these equations. We present the quantum L-operator algebra and show that the system of equations on R and (R) over bar arises as the compatibility condition for this algebra. It turns out that the R-matrix is twist-equivalent to the Felder elliptic R-F-matrix with (R) over bar playing the role of the twist. The simplest representation of the quantum L-operator algebra corresponding to the elliptic Ruijsenaars-Schneider model is obtained. The connection of the quantum L-operator algebra to the fundamental relation RLL = LLR with Belavin's elliptic R matrix is established. As a byproduct of our construction, we find a new N-parameter elliptic solution to the classical Yang-Baxter equation.
引用
收藏
页码:405 / 432
页数:28
相关论文
共 50 条
  • [31] The Ruijs']jsenaars-Schneider model in the context of Seiberg-Witten theory
    Braden, HW
    Marshakov, A
    Mironov, A
    Morozov, A
    NUCLEAR PHYSICS B, 1999, 558 (1-2) : 371 - 390
  • [32] Spin Ruijs']jsenaars-Schneider Models from Reduction
    Arutyunov, G.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 730 - 733
  • [33] Integrable discretizations of the spin Ruijs']jsenaars-Schneider models
    Ragnisco, O
    Suris, YB
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (09) : 4680 - 4691
  • [34] Algebraic linearization of hyperbolic Ruijs']jsenaars-Schneider systems
    Caseiro, R
    Françoise, JP
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 58 - 61
  • [35] Constrained Toda hierarchy and turning points of the Ruijs']jsenaars-Schneider model
    Krichever, I
    Zabrodin, A.
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [36] The Lax pairs for elliptic Cn and BCn Ruijs']jsenaars-Schneider models and their spectral curves
    Chen, K
    Hou, BY
    Yang, WL
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (10) : 4894 - 4914
  • [37] Integrability of the Cn and BCn Ruijs']jsenaars-Schneider models
    Chen, K
    Hou, B
    Yang, WL
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) : 8132 - 8147
  • [38] Hyperbolic Spin Ruijs']jsenaars-Schneider Model from Poisson Reduction
    Arutyunov, Gleb E.
    Olivucci, Enrico
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (01) : 31 - 45
  • [39] Quantum trace formulae for the integrals of the hyperbolic Ruijs']jsenaars-Schneider model
    Arutyunov, Gleb
    Klabbers, Rob
    Olivucci, Enrico
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [40] Quantum versus classical integrability in Ruijs']jsenaars-Schneider systems
    Ragnisco, O
    Sasaki, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (02): : 469 - 479