A FAST SOLVER FOR THE FRACTIONAL HELMHOLTZ EQUATION

被引:3
|
作者
Glusa, Christian [1 ]
Antil, Harbir [2 ,3 ]
D'Elia, Marta [4 ]
Waanders, Bart van Bloemen [1 ]
Weiss, Chester J. [5 ]
机构
[1] Sandia Natl Labs, Ctr Comp Res, Albuquerque, NM 87123 USA
[2] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Ctr Math & Artificial Intelligence CMAI, Fairfax, VA 22030 USA
[4] Sandia Natl Labs, Computat Sci & Anal, Livermore, CA 94550 USA
[5] Sandia Natl Labs, Geophys Dept, Albuquerque, NM 87185 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 02期
关键词
fractional Helmholtz equation; spectral fractional Laplacian; error analysis; CONVERGENCE ANALYSIS; EXTENSION PROBLEM; APPROXIMATION; DISCRETIZATIONS; REGULARITY; DIRICHLET; OPERATORS; ORDER;
D O I
10.1137/19M1302351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study a Helmholtz problem with a spectral fractional Laplacian, instead of the standard Laplacian. Recently, it has been established that such a fractional Helmholtz problem better captures the underlying behavior in geophysical electromagnetics. We establish the well-posedness and regularity of this problem. We introduce a hybrid spectral-finite element approach to discretize it and show well-posedness of the discrete system. In addition, we derive a priori discretization error estimates. Finally, we introduce an efficient solver that scales as well as the best possible solver for the classical integer-order Helmholtz equation. We conclude with several illustrative examples that confirm our theoretical findings.
引用
收藏
页码:A1362 / A1388
页数:27
相关论文
共 50 条
  • [21] A new preconditioner for the interface system arising in a fast Helmholtz solver
    Du, Kui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (04) : 794 - 806
  • [22] The global uniqueness of a dissipative fractional Helmholtz equation
    Zhang, Yu
    Zhang, Wenjing
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [23] Factorization of the Fundamental Solution to Fractional Helmholtz Equation
    Belevtsov, N. S.
    Lukashchuk, S. Yu.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (01) : 57 - 62
  • [24] A Stable Fast Solver for Quasi-Helmholtz Decomposition Methods
    Andriulli, Francesco P.
    Campione, Salvatore
    Vecchi, Giuseppe
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 2615 - 2618
  • [25] Factorization of the Fundamental Solution to Fractional Helmholtz Equation
    N. S. Belevtsov
    S. Yu. Lukashchuk
    Lobachevskii Journal of Mathematics, 2021, 42 : 57 - 62
  • [26] Fractional solutions of Helmholtz equation in scattering problems
    Ahmedov, TM
    Ivakhnychenko, MV
    Veliev, EI
    MSMW'04: FIFTH INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER, AND SUBMILLIMETER WAVES, SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2004, : 910 - 912
  • [27] Hypercomplex operator calculus for the fractional Helmholtz equation
    Vieira, Nelson
    Ferreira, Milton
    Rodrigues, M. Manuela
    Krausshar, Rolf Soeren
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (14) : 11439 - 11472
  • [28] A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasound
    Stanziola, Antonio
    Arridge, Simon R.
    Cox, Ben T.
    Treeby, Bradley E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 441
  • [29] Solving Helmholtz Equation with Local Fractional Derivative Operators
    Baleanu, Dumitru
    Jassim, Hassan Kamil
    Al Qurashi, Maysaa
    FRACTAL AND FRACTIONAL, 2019, 3 (03) : 1 - 12
  • [30] A fast solver for a hypersingular boundary integral equation
    Cai, Haotao
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1960 - 1969