Sleep stage classification from heart-rate variability using long short-term memory neural networks

被引:96
|
作者
Radha, Mustafa [1 ,2 ]
Fonseca, Pedro [1 ,2 ]
Moreau, Arnaud [3 ]
Ross, Marco [3 ]
Cerny, Andreas [3 ]
Anderer, Peter [3 ]
Long, Xi [1 ,2 ]
Aarts, Ronald M. [1 ,2 ]
机构
[1] Royal Philips, Res, High Tech Campus 34, NL-5656 AE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Philips Austria GmbH, Kranichberggasse 4, A-1120 Vienna, Austria
关键词
TIME-SERIES; CARDIORESPIRATORY COORDINATION; APPROXIMATE ENTROPY; SPECTRAL-ANALYSIS; ALGORITHM; DYNAMICS; FEATURES;
D O I
10.1038/s41598-019-49703-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account longterm sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution to model long-term cardiac sleep architecture information and validated on a comprehensive data set (292 participants, 584 nights, 541.214 annotated 30 s sleep segments) comprising a wide range of ages and pathological profiles, annotated according to the Rechtschaffen and Kales (R&K) annotation standard. It is shown that the model outperforms state-of-the-art approaches which were often limited to non-temporal or short-term recurrent classifiers. The model achieves a Cohen's k of 0.61 +/- 0.15 and accuracy of 77.00 +/- 8.90% across the entire database. Further analysis revealed that the performance for individuals aged 50 years and older may decline. These results demonstrate the merit of deep temporal modelling using a diverse data set and advance the state-of-the-art for HRV-based sleep stage classification. Further research is warranted into individuals over the age of 50 as performance tends to worsen in this sub-population.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Network attacks classification using Long Short-term memory based neural networks in Software-Defined Networks
    Volkov, S. S.
    Kurochkin, I. I.
    9TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE, YSC2020, 2020, 178 : 394 - 403
  • [42] Comparing long and short-term assessment of heart rate variability in Dravet Syndrome and the effect of sleep
    Perulli, M.
    Venditti, R.
    Scala, I.
    Della Marca, G.
    Brunetti, V.
    Battaglia, D. I.
    EPILEPSIA, 2023, 64 : 256 - 256
  • [43] Dialog State Tracking Using Long Short-term Memory Neural Networks
    Yang, Xiaohao
    Liu, Jia
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1800 - 1804
  • [44] Deflated reputation using multiplicative long short-term memory neural networks
    Ma, Yixuan
    Zhang, Zhenji
    Li, Deming
    Tang, Mincong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 118 : 198 - 207
  • [45] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Lemos Neto, Alvaro C.
    Coelho, Rodrigo A.
    de Castro, Cristiano L.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (05) : 1457 - 1465
  • [46] An Incremental Learning Approach Using Long Short-Term Memory Neural Networks
    Álvaro C. Lemos Neto
    Rodrigo A. Coelho
    Cristiano L. de Castro
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 1457 - 1465
  • [47] Predicting Marimba Stickings Using Long Short-Term Memory Neural Networks
    Chong, Jet Kye
    Correa, Debora
    AI 2022: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13728 : 339 - 352
  • [48] SPOKEN LANGUAGE UNDERSTANDING USING LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Yao, Kaisheng
    Peng, Baolin
    Zhang, Yu
    Yu, Dong
    Zweig, Geoffrey
    Shi, Yangyang
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 189 - 194
  • [49] Automated Sleep Apnea Detection in Raw Respiratory Signals Using Long Short-Term Memory Neural Networks
    Van Steenkiste, Tom
    Groenendaal, Willemijn
    Deschrijver, Dirk
    Dhaene, Tom
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (06) : 2354 - 2364
  • [50] Dialogue Intent Classification with Long Short-Term Memory Networks
    Meng, Lian
    Huang, Minlie
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2017, 2018, 10619 : 42 - 50