Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries

被引:51
|
作者
Zhu, Qing [1 ,2 ]
Wang, Man [2 ]
Nan, Bo [2 ]
Shi, Haohong [2 ]
Zhang, Xinmei [1 ]
Deng, Yonghong [2 ]
Wang, Liping [4 ]
Chen, Quanqi [1 ,3 ]
Lu, Zhouguang [2 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guangxi Key Lab Electrochem & Magnetochem Funct M, Guilin 541004, Peoples R China
[2] South Univ Sci & Technol China, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Guilin Univ Technol, Collaborat Innovat Ctr Explorat Hidden Nonferrous, Guilin 541004, Peoples R China
[4] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell; Sodium vanadium phosphate; Sodium-ion batteries anode; Coaxial electrospinning; Capacitive capacity; ANATASE TIO2; HIGH-CAPACITY; NANOPARTICLES; CARBON; MICROSPHERES; STORAGE;
D O I
10.1016/j.jpowsour.2017.07.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na3V2(PO4)(3)/C/TiO2 (NVP/C/TiO2) composite nanofibers with core/shell nanostructure are prepared by coaxial electrospinning plus heat treatment method. The physical and electrochemical performances of NVP/C/TiO2 nanofibers are investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electrochemical tests. The results show that the composite nanofibers are made of TiO2/C nanoparticles shell and Na3V2(PO4)(3)/C nanofibers core with embedded TiO2/C nanoparticles. NVP/C/TiO2 nanofibers exhibite much better electrochemical performance than both TiO2/C and Na3V2(PO4)(3)/C nanofibers prepared by coaxial electrospinning method. The core-shelled NVP/C/TiO2 nanofibers delivere a reversible capacity of 196.1 mAh g(-1) at 0.2C (35.6 mA g(-1)) in the voltage of 0.01 3.0 V (vs.Na+/Na), which is higher than the theoretical capacity of 178 mAh g(-1) for Na3V2(PO4)(3) and that of TiO2/C composite. NVP/C/TiO2 also displays excellent cycle stability and rate capability. Even at a high rate of 20C, it can still release a high reversible charge capacity of 109 mAh g(-1) and retain a capacity of more than 70 mAh g(-1), after 1500 cycles. The special microstructure and synergetic effects of Na3V2(PO4)(3), conductive carbon and ultrafine TiO2 are responsible for the excellent electrochemical performance. This facile strategy exhibits superiority in fabricating core-shell nanostructured composite nanofibers as promising electrode materials for energy storage devices. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [21] The Synthesis of Porous Na3V2(PO4)3 for Sodium-Ion Storage
    Xiong, Hailong
    Qi, Chunyu
    Lv, Shiquan
    Zhang, Ling
    Qiao, Zhen-An
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (60) : 14790 - 14799
  • [22] Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries
    Shen, Wei
    Wang, Cong
    Liu, Haimei
    Yang, Wensheng
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (43) : 14712 - 14718
  • [23] A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries
    Song, Weixin
    Cao, Xiaoyu
    Wu, Zhengping
    Chen, Jun
    Huangfu, Kaili
    Wang, Xiaowen
    Huang, Yaliang
    Ji, Xiaobo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (33) : 17681 - 17687
  • [24] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Bo Li
    Jing Liu
    Xia Xiu
    Guanglei Yang
    Kaixing Zhu
    Bulletin of Materials Science, 46
  • [25] Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries
    Wenhao Zhu
    Qianlun Mao
    Yuexin Jia
    Jiangfeng Ni
    Lijun Gao
    Journal of Electronic Materials, 2023, 52 : 836 - 846
  • [26] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Li, Bo
    Liu, Jing
    Xiu, Xia
    Yang, Guanglei
    Zhu, Kaixing
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (02)
  • [27] Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries
    Aragon, Maria J.
    Lavela, Pedro
    Ortiz, Gregorio F.
    Tirado, Jose L.
    CHEMELECTROCHEM, 2015, 2 (07): : 995 - 1002
  • [28] High power Na3V2(PO4)3 symmetric full cell for sodium-ion batteries
    Sadan, Milan K.
    Haridas, Anupriya K.
    Kim, Huihun
    Kim, Changhyeon
    Cho, Gyu-Bong
    Cho, Kwon-Koo
    Ahn, Jou-Hyeon
    Ahn, Hyo-Jun
    NANOSCALE ADVANCES, 2020, 2 (11): : 5166 - 5170
  • [29] Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries
    Zhu, Wenhao
    Mao, Qianlun
    Jia, Yuexin
    Ni, Jiangfeng
    Gao, Lijun
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) : 836 - 846
  • [30] Environmental Impact Assessment of Na3V2(PO4)3 Cathode Production for Sodium-Ion Batteries
    Rey, Irene
    Iturrondobeitia, Maider
    Akizu-Gardoki, Ortzi
    Minguez, Rikardo
    Lizundia, Erlantz
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):