Signature-Domain Calibration of Hydrological Models Using Approximate Bayesian Computation: Empirical Analysis of Fundamental Properties

被引:38
|
作者
Fenicia, Fabrizio [1 ]
Kavetski, Dmitri [1 ,2 ]
Reichert, Peter [1 ]
Albert, Carlo [1 ]
机构
[1] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dubendorf, Switzerland
[2] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
基金
澳大利亚研究理事会;
关键词
data signature; Bayesian model calibration; uncertainty; approximate Bayesian computation (ABC); flow duration curve; flashiness index; FLOW-DURATION CURVES; CHAIN MONTE-CARLO; RAINFALL-RUNOFF MODELS; UNGAUGED BASINS; WATER AGE; UNCERTAINTY; INFERENCE; PREDICTION; CATCHMENT; DREAM((ABC));
D O I
10.1002/2017WR021616
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Bayesian signature-domain inference of hydrological models using Approximate Bayesian Computation (ABC) algorithms, and compares it to "traditional" time-domain inference. Our focus is on the quantification of predictive uncertainty in the streamflow time series and on understanding the information content of particular combinations of signatures. A combination of synthetic and real data experiments using conceptual rainfall-runoff models is employed. Synthetic experiments demonstrate: (i) the general consistency of signature and time-domain inferences, (ii) the ability to estimate streamflow error model parameters (reliably quantify streamflow uncertainty) even when calibrating in the signature domain, and (iii) the potential robustness of signature-domain inference when the (probabilistic) hydrological model is misspecified (e.g., by unaccounted timing errors). The experiments also suggest limitations of the signature-domain approach in terms of information loss when general (nonsufficient) statistics are used, and increased computational costs incurred by the ABC implementation. Real data experiments confirm the viability of Bayesian signature-domain inference and its general consistency with time-domain inference in terms of predictive uncertainty quantification. In addition, we demonstrate the utility of the flashiness index for the estimation of streamflow error parameters, and show that signatures based on the Flow Duration Curve alone are insufficient to calibrate parameters controlling streamflow dynamics. Overall, the study further establishes signature-domain inference (implemented using ABC) as a promising method for comparing the information content of hydrological signatures, for prediction under data-scarce conditions, and, under certain circumstances, for mitigating the impact of deficiencies in the formulation of the predictive model.
引用
收藏
页码:3958 / 3987
页数:30
相关论文
共 50 条
  • [31] Calibrating models of cancer invasion: parameter estimation using approximate Bayesian computation and gradient matching
    Xiao, Yunchen
    Thomas, Len
    Chaplain, Mark A. J.
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (06):
  • [32] Calibration of hydrological model GR2M using Bayesian uncertainty analysis
    Huard, David
    Mailhot, Alain
    WATER RESOURCES RESEARCH, 2008, 44 (02)
  • [33] Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers
    Jeremiah, Erwin
    Sisson, Scott
    Marshall, Lucy
    Mehrotra, Rajeshwar
    Sharma, Ashish
    WATER RESOURCES RESEARCH, 2011, 47
  • [34] FITTING MODELS OF CONTINUOUS TRAIT EVOLUTION TO INCOMPLETELY SAMPLED COMPARATIVE DATA USING APPROXIMATE BAYESIAN COMPUTATION
    Slater, Graham J.
    Harmon, Luke J.
    Wegmann, Daniel
    Joyce, Paul
    Revell, Liam J.
    Alfaro, Michael E.
    EVOLUTION, 2012, 66 (03) : 752 - 762
  • [35] Incorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation
    Almutiry, Waleed
    Deardon, Rob
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (01):
  • [36] Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation
    Ruffley, Megan
    Peterson, Katie
    Week, Bob
    Tank, David C.
    Harmon, Luke J.
    ECOLOGY AND EVOLUTION, 2019, 9 (23): : 13218 - 13230
  • [37] Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC
    Justino da Costa, Jose Mir
    Barreto Orlande, Helcio Rangel
    da Silva, Wellington Betencurte
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2795 - 2815
  • [38] Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation
    Vo, Brenda N.
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Simpson, Matthew J.
    MATHEMATICAL BIOSCIENCES, 2015, 263 : 133 - 142
  • [39] Parameter Estimation for Reynolds-Averaged Navier-Stokes Models Using Approximate Bayesian Computation
    Doronina, Olga A.
    Murman, Scott M.
    Hamlington, Peter E.
    AIAA JOURNAL, 2021, 59 (11) : 4703 - 4718
  • [40] Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density
    Qianqian Wu
    Kate Smith-Miles
    Tianhai Tian
    BMC Bioinformatics, 15