High-performance SIMD implementation of the lattice-Boltzmann method on the Xeon Phi processor

被引:4
|
作者
Robertsen, Fredrik [1 ,2 ]
Mattila, Keijo [3 ,4 ]
Westerholm, Jan [2 ]
机构
[1] CSC IT Ctr Sci, POB 405, FI-02101 Espoo, Finland
[2] Abo Akad Univ, Fac Sci & Engn, Vattenborgsvagen 3, FI-20500 Turku, Finland
[3] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
[4] Tampere Univ Technol, Dept Phys, Tampere, Finland
来源
关键词
Lattice Boltzmann; prefetching; SIMD; Xeon Phi;
D O I
10.1002/cpe.5072
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a high-performance implementation of the lattice-Boltzmann method (LBM) on the Knights Landing generation of Xeon Phi. The Knights Landing architecture includes 16GB of high-speed memory (MCDRAM) with a reported bandwidth of over 400 GB/s, and a subset of the AVX-512 single instruction multiple data (SIMD) instruction set. We explain five critical implementation aspects for high performance on this architecture: (1) the choice of appropriate LBM algorithm, (2) suitable data layout, (3) vectorization of the computation, (4) data prefetching, and (5) running our LBM simulations exclusively from the MCDRAM. The effects of these implementation aspects on the computational performance are demonstrated with the lattice-Boltzmann scheme involving the D3Q19 discrete velocity set and the TRT collision operator. In our benchmark simulations of fluid flow through porous media, using double-precision floating-point arithmetic, the observed performance exceeds 960 million fluid lattice site updates per second.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] An Efficient Optimization of Hll Method for the Second Generation of Intel Xeon Phi Processor
    Kulikov I.M.
    Chernykh I.G.
    Glinskiy B.M.
    Protasov V.A.
    Lobachevskii Journal of Mathematics, 2018, 39 (4) : 543 - 551
  • [42] A Consistent Grid Coupling Method for Lattice-Boltzmann Schemes
    Martin Rheinländer
    Journal of Statistical Physics, 2005, 121 : 49 - 74
  • [43] Intel Xeon Phi Coprocessor High Performance Programming
    More, Andres
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2013, 13 (02): : 105 - 106
  • [44] Macrosegregation simulation model based on Lattice-Boltzmann method with high computational efficiency
    Ohno, Munekazu
    Sato, Hayato
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 561 - 570
  • [45] A consistent grid coupling method for Lattice-Boltzmann schemes
    Rheinlander, M
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (1-2) : 49 - 74
  • [46] Verification of multi-component lattice-Boltzmann method
    Niimura, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2): : 157 - 160
  • [47] Lattice-Boltzmann method for macroscopic porous media modeling
    Freed, DM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1491 - 1503
  • [48] AEROACOUSTIC OPTIMIZATION FOR AXIAL FANS WITH THE LATTICE-BOLTZMANN METHOD
    Stadler, Michael
    Schmitz, Michael B.
    Ragg, Peter
    Holman, David M.
    Brionnaud, Ruddy
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 3, 2012, : 743 - +
  • [49] Consistent wall boundary condition for lattice-Boltzmann method
    Hioki, Jun
    Kajishima, Takeo
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (670): : 1677 - 1683
  • [50] Lattice-Boltzmann method for yield-stress liquids
    Vikhansky, A.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2008, 155 (03) : 95 - 100