The Effects of Heat Treatment on Tensile and Thermal Expansion Behavior of Laser Powder-Bed Fusion Invar36

被引:12
|
作者
Rishmawi, Issa [1 ]
Rogalsky, Allan [1 ]
Vlasea, Mihaela [1 ]
Salarian, Mehrnaz [2 ]
Bakhshivash, Soheil [2 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[2] Burloak Technol, Oakville, ON, Canada
关键词
additive manufacturing; coefficient of thermal expansion; hot isostatic pressing; Invar36; laser powder-bed fusion; tensile properties; MICROSTRUCTURE; COEFFICIENTS;
D O I
10.1007/s11665-022-07013-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study is concerned with the effects of heat treatments and build orientation on the coefficient of thermal expansion (CTE) and tensile behavior in the context of laser powder-bed fusion of Invar36. Tensile and CTE samples printed in the x, y, and z orientations were annealed, hot isostatic pressing (HIP)-treated, and subsequently characterized for porosity, thermal expansion, and tensile behavior. Porosity was determined through computed tomography and showed that HIP closed most of the pores. Some anisotropy in tensile strength was statistically identified both before and after HIP and was not found to completely depend on porosity. The CTE was found to depend on build orientation and porosity; the CTE values determined (average 1.47 +/- 0.06 mu m/m degrees C for 30-100 degrees C) were lower than typical for conventionally manufactured Invar36. Most importantly, HIP after annealing was found to reduce the porosity levels and affect neither the tensile properties nor the CTE values. [GRAPHICS] .
引用
收藏
页码:9727 / 9739
页数:13
相关论文
共 50 条
  • [21] Effect of Vacuum Heat Treatment on the Microstructure of a Laser Powder-Bed Fusion-Fabricated NiTa Alloy
    Wu, Cheng-Tse
    Bussmann, Markus
    Chattopadhyay, Kinnor
    METALS, 2022, 12 (05)
  • [22] Powder thermal conductivity measurements in laser powder-bed fusion: an uncertainty study with sensitivity analysis
    Zhang, Shanshan
    Lane, Brandon
    Chou, Kevin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (05)
  • [23] Effect of heat treatment and defects on the tensile behavior of a hot work tool steel manufactured by laser powder bed fusion
    Zanni, Mattia
    Berto, Filippo
    Vullum, Per Erik
    Tonelli, Lavinia
    Morri, Alessandro
    Ceschini, Lorella
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (07) : 2681 - 2696
  • [24] High cycle fatigue behaviour of Invar 36 alloy fabricated by laser powder bed fusion
    Zhang, Chi
    Zhou, Ye
    Wei, Kai
    Yang, Qidong
    Zhou, Junhan
    Zhou, Hao
    Zhang, Xiaoyu
    Yang, Xujing
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [25] Effects of post-weld heat treatment on microstructure, tensile properties and linear expansion behavior of laser welded Invar alloy
    Liu, Zhiyao
    Zhang, Wei
    Gao, Peiming
    Xing, Yawei
    Wu, Lindi
    Pei, Yutao
    Li, Yang
    Ao, Sansan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 914
  • [26] Precipitation and dissolution of δ and γ" during heat treatment of a laser powder-bed fusion produced Ni-based superalloy
    Lass, Eric A.
    Stoudt, Mark R.
    Katz, Michael B.
    Williams, Maureen E.
    SCRIPTA MATERIALIA, 2018, 154 : 83 - 86
  • [27] Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion
    Dryepondt, Sebastien
    Nandwana, Peeyush
    Fernandez-Zelaia, Patxi
    List, Fred, III
    ADDITIVE MANUFACTURING, 2021, 37
  • [28] Effect of subgrain microstructure on the mechanical properties of Invar 36 specimens prepared by laser powder bed fusion
    Ren, Guoxin
    Cui, Zeqin
    Hao, Xiaohu
    Qiu, Dong
    Zhang, Hongwei
    Wang, Wenxian
    Li, Weiguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [29] Heat transfer finite element model for laser powder-bed fusion on consolidated simulation geometry
    Hu, Ruixiong
    Rock, Stephen
    Maniatty, Antoinette M.
    COMPUTATIONAL MECHANICS, 2023, 71 (04) : 745 - 763
  • [30] Heat transfer finite element model for laser powder-bed fusion on consolidated simulation geometry
    Ruixiong Hu
    Stephen Rock
    Antoinette M. Maniatty
    Computational Mechanics, 2023, 71 : 745 - 763