Decentralized adaptive coupling synchronization of fractional-order complex-variable dynamical networks.

被引:56
|
作者
Xu, Quan [1 ,2 ]
Zhuang, Shengxian [2 ]
Liu, Sijia [2 ]
Xiao, Jian [2 ]
机构
[1] Xihua Univ, Sch Technol, Chengdu 610039, Peoples R China
[2] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Decentralized adaptive control; Synchronization; Complex-variable dynamical networks; Fractional-order; Hermitian quadrtic Lyapunov functions; DIFFUSION NEURAL-NETWORKS; PROJECTIVE SYNCHRONIZATION; IMPULSIVE SYNCHRONIZATION; CLUSTER SYNCHRONIZATION; LYAPUNOV FUNCTIONS; STABILITY; SYSTEMS; CHAOS; PASSIVITY;
D O I
10.1016/j.neucom.2015.12.072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we combine decentralized adaptive control with the fractional-order techniques to investigate the synchronization of fractional-order complex-variable dynamical networks. A new lemma is proposed for estimating the Caputo fractional derivatives of Hermitian quadrtic Lyapunov functions. Based on local information among neighboring nodes, an effective fractional-order decentralized adaptive strategy to tune the coupling gains among network nodes is designed. This analysis is further extended to the case where only a small fraction of coupling gains are choosen to be adjusted. By constructing suitable Lyapunov functions and utilizing the proposed lemma, two sufficient criteria are derived to guarantee the network synchronization by using the proposed adaptive laws. Finally, numerical examples are given to validate the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [22] Complex Modified Projective Synchronization of Two Fractional-order Complex-variable Chaotic Systems
    Tian, Xiaomin
    Yang, Zhong
    Fei, Shumin
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 458 - 462
  • [23] Real combination synchronization of three fractional-order complex-variable chaotic systems
    Sun, Junwei
    Deng, Wei
    Cui, Guangzhao
    Wang, Yanfeng
    OPTIK, 2016, 127 (23): : 11460 - 11468
  • [24] Complex Modified Projective Synchronization of Fractional-Order Complex-Variable Chaotic System with Unknown Complex Parameters
    Zhang, Ruoxun
    Feng, Shiwen
    Yang, Shiping
    ENTROPY, 2019, 21 (04)
  • [25] Adaptive Synchronization of Fractional-Order Complex-Valued Uncertainty Dynamical Network with Coupling Delay
    Dawei Ding
    Xiaolei Yao
    Nian Wang
    International Journal of Theoretical Physics, 2019, 58 : 2357 - 2371
  • [26] Adaptive Synchronization of Fractional-Order Complex-Valued Uncertainty Dynamical Network with Coupling Delay
    Ding, Dawei
    Yao, Xiaolei
    Wang, Nian
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (07) : 2357 - 2371
  • [27] Adaptive feedback synchronization of fractional-order complex dynamic networks
    Lei, Youming
    Yang, Yong
    Fu, Rui
    Wang, Yanyan
    JOURNAL OF VIBRATION AND CONTROL, 2017, 23 (06) : 883 - 894
  • [28] Topology identification and adaptive synchronization of fractional-order complex networks
    Jia, Jinping
    ADVANCES IN APPLIED SCIENCES AND MANUFACTURING, PTS 1 AND 2, 2014, 850-851 : 936 - 938
  • [29] Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters
    Yang, Li-xin
    Jiang, Jun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (05) : 1496 - 1506
  • [30] Function projective synchronization of two fractional-order complex dynamical networks
    Du H.-Y.
    Sun W.-S.
    Hu G.
    Qi L.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2016, 42 (02): : 226 - 234