Multi-Cell Mobile Edge Computing: Joint Service Migration and Resource Allocation

被引:73
|
作者
Liang, Zezu [1 ]
Liu, Yuan [2 ]
Lok, Tat-Ming [1 ]
Huang, Kaibin [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R China
[2] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
关键词
Servers; Handover; Resource management; Interference; Task analysis; Computational modeling; Cloud computing; Mobile-edge computing (MEC); service migration; handover; resource management; FOLLOW ME; MANAGEMENT; MODEL; TASK;
D O I
10.1109/TWC.2021.3070974
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile-edge computing (MEC) enhances the capacities and features of mobile devices by offloading computation-intensive tasks over wireless networks to edge servers. One challenge faced by the deployment of MEC in cellular networks is to support user mobility. As a result, offloaded tasks can be seamlessly migrated between base stations (BSs) without compromising the resource-utilization efficiency and link reliability. In this paper, we tackle the challenge by optimizing the policy for migration/handover between BSs by jointly managing computation-and-radio resources. The objectives are twofold: maximizing the sum offloading rate, quantifying MEC throughput, and minimizing the migration cost. The policy design is formulated as a decision-optimization problem that accounts for virtualization, I/O interference between virtual machines (VMs), and wireless multi-access. To solve the complex combinatorial problem, we develop an efficient relaxation-and-rounding based solution approach. The approach relies on an optimal iterative algorithm for solving the integer-relaxed problem and a novel integer-recovery design. The latter outperforms the traditional rounding method by exploiting the derived problem properties and applying matching theory. In addition, we also consider the design for a special case of "hotspot mitigation", referring to alleviating an overloaded server/BS by migrating its load to the nearby idle servers/BSs. From simulation results, we observed close-to-optimal performance of the proposed migration policies under various settings. This demonstrates their efficiency in computation-and-radio resource management for joint service migration and BS handover in multi-cell MEC networks.
引用
收藏
页码:5898 / 5912
页数:15
相关论文
共 50 条
  • [31] HTR: A Joint Approach for Task Offloading and Resource Allocation in Mobile Edge Computing
    Wang, Zilong
    Du, Hongwei
    Ye, Qiang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [32] An energy-saving joint resource allocation strategy for mobile edge computing
    Wei, Liang
    PHYSICAL COMMUNICATION, 2024, 67
  • [33] Joint task offloading and resource allocation in mobile edge computing with energy harvesting
    Li, Shichao
    Zhang, Ning
    Jiang, Ruihong
    Zhou, Zou
    Zheng, Fei
    Yang, Guiqin
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [34] Joint Optimization of Wireless Resource Allocation and Task Partition for Mobile Edge Computing
    Yang, Zhuo
    Xie, Jinfeng
    Gao, Jie
    Chen, Zhixiong
    Jia, Yunjian
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 1303 - 1307
  • [35] On Joint Cooperative Relaying, Resource Allocation, and Scheduling for Mobile Edge Computing Networks
    Biswas, Nilanjan
    Wang, Zijian
    Vandendorpe, Luc
    Mirghasemi, Hamed
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (09) : 5882 - 5897
  • [36] Joint task offloading and resource allocation in mobile edge computing with energy harvesting
    Shichao Li
    Ning Zhang
    Ruihong Jiang
    Zou Zhou
    Fei Zheng
    Guiqin Yang
    Journal of Cloud Computing, 11
  • [37] Mobile Edge Computing With Wireless Backhaul: Joint Task Offloading and Resource Allocation
    Quoc-Viet Pham
    Le, Long Bao
    Chung, Sang-Hwa
    Hwang, Won-Joo
    IEEE ACCESS, 2019, 7 : 16444 - 16459
  • [38] Joint Virtual Machine Selection and Computation Resource Allocation in Mobile Edge Computing
    Yang, Huifeng
    Meng, Xianglong
    Li, Yichao
    Wei, Yong
    Shang, Li
    Wang, Jiucheng
    Lin, Peng
    JOURNAL OF SENSORS, 2023, 2023
  • [39] Joint Heterogeneous Tasks Offloading and Resource Allocation in Mobile Edge Computing Systems
    Wang, Sihua
    Pan, Chunyu
    Yin, Changchuan
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [40] Joint Task Partition and Resource Allocation for Multiuser Cooperative Mobile Edge Computing
    Xie, Gang
    Wang, Zhenzhen
    Liu, Yuanan
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022