Finding the Forward-Douglas-Rachford-Forward Method

被引:42
|
作者
Ryu, Ernest K. [1 ]
Bang Cong Vu [2 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[2] Vietnam Natl Univ, Dept Math, Hanoi, Vietnam
关键词
Douglas-Rachford; Forward-backward-forward; Forward-reflected-backward; Monotone inclusion; MONOTONE-OPERATORS; ALGORITHM; SUM; CONVERGENCE; PERFORMANCE;
D O I
10.1007/s10957-019-01601-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the monotone inclusion problem with a sum of 3 operators, in which 2 are monotone and 1 is monotone-Lipschitz. The classical Douglas-Rachford and forward-backward-forward methods, respectively, solve the monotone inclusion problem with a sum of 2 monotone operators and a sum of 1 monotone and 1 monotone-Lipschitz operators. We first present a method that naturally combines Douglas-Rachford and forward-backward-forward and show that it solves the 3-operator problem under further assumptions, but fails in general. We then present a method that naturally combines Douglas-Rachford and forward-reflected-backward, a recently proposed alternative to forward-backward-forward by Malitsky and Tam (A forward-backward splitting method for monotone inclusions without cocoercivity, 2018. ). We show that this second method solves the 3-operator problem generally, without further assumptions.
引用
收藏
页码:858 / 876
页数:19
相关论文
共 50 条
  • [31] A simplified proof of weak convergence in Douglas-Rachford method
    Svaiter, Benar F.
    OPERATIONS RESEARCH LETTERS, 2019, 47 (04) : 291 - 293
  • [32] CONVERAGENCE OF RANDOMIZED DOUGLAS-RACHFORD METHOD FOR LINEAR SYSTEM
    Hu, Leyu
    Cai, Xingju
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 463 - 474
  • [33] A parameterized Douglas–Rachford algorithm
    Dongying Wang
    Xianfu Wang
    Computational Optimization and Applications, 2019, 73 : 839 - 869
  • [34] Linearized Douglas–Rachford method for variational inequalities with Lipschitz mappings
    Qiao-Li Dong
    Computational and Applied Mathematics, 2023, 42
  • [35] Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem
    Francisco J. Aragón Artacho
    Jonathan M. Borwein
    Matthew K. Tam
    Journal of Global Optimization, 2016, 65 : 309 - 327
  • [36] On the convergence rate of Douglas-Rachford operator splitting method
    He, Bingsheng
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2015, 153 (02) : 715 - 722
  • [37] Douglas-Rachford is the best projection method in its family
    Dao, Minh N.
    Dressler, Mareike
    Liao, Hongzhi
    Roshchina, Vera
    OPTIMIZATION, 2024,
  • [38] A Douglas-Rachford splitting method for solving equilibrium problems
    Briceno-Arias, Luis M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) : 6053 - 6059
  • [39] THE CYCLIC DOUGLAS-RACHFORD METHOD FOR INCONSISTENT FEASIBILITY PROBLEMS
    Borwein, Jonathan M.
    Tam, Matthew K.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (04) : 573 - 584
  • [40] On the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) : 263 - 284