A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules

被引:55
|
作者
Hernandez, D. [1 ]
Leclerc, B. [2 ,3 ,4 ]
机构
[1] Univ Paris 07, Sorbonne Paris Cite, CNRS, Inst Math Jussieu Paris Rive Gauche UMR 7586, Bat Sophie Germain,Case 7012, F-75205 Paris 13, France
[2] Normandie Univ, Caen, France
[3] UNICAEN, LMNO, F-14032 Caen, France
[4] CNRS, UMR 6139, F-14032 Caen, France
基金
欧洲研究理事会;
关键词
Quantum affine algebra; cluster algebras; q-characters; Kirillov-Reshetikhin modules; geometric character formula; FINITE-DIMENSIONAL REPRESENTATIONS; QUIVER VARIETIES; MINIMAL AFFINIZATIONS; QUANTUM GROUPS; T-SYSTEMS; PERIODICITIES; POTENTIALS;
D O I
10.4171/JEMS/609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a cluster algebra algorithm for calculating the q-characters of Kirillov-Reshetikhin modules for any untwisted quantum affine algebra U-q(g) over cap. This yields a geometric q-character formula for tensor products of Kirillov-Reshetikhin modules. When g is of type A, D, E, this formula extends Nakajima's formula for q-characters of standard modules in terms of homology of graded quiver varieties.
引用
收藏
页码:1113 / 1159
页数:47
相关论文
共 27 条