Noise-Robust Iris Authentication Using Local Higher-Order Moment Kernels

被引:0
|
作者
Kameyama, Keisuke [1 ]
Trung Nguyen Bao Phan [2 ]
Aizawa, Miharu [2 ]
机构
[1] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
Iris; Biometrics; Autocorrelation; Higher-order statistics; Kernel; CLASSIFICATION; RECOGNITION;
D O I
10.1007/978-3-319-26561-2_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel biometric authentication method using kernel functions of higher-order statistical feature of the iris texture is introduced. When the observed iris images include noise, direct estimation and use of Gabor and local higher-order moment (LHOM) features for iris code generation suffers from performance degradation. In order to solve this issue, we propose to use the LHOM kernel function of pairs of local textures on a single iris image. In the experiments, the proposed method using LHOM kernels of orders 2 to 6 proved to be significantly robust against noise when compared with the conventional method.
引用
收藏
页码:419 / 427
页数:9
相关论文
共 50 条
  • [31] Noise-Robust Texture Description Using Local Contrast Patterns via Global Measures
    Song, Tiecheng
    Li, Hongliang
    Meng, Fanman
    Wu, Qingbo
    Luo, Bing
    Zeng, Bing
    Gabbouj, Moncef
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (01) : 93 - 96
  • [32] Robust Iris Recognition Using Moment Invariants
    Kaur, Bineet
    Singh, Sukhwinder
    Kumar, Jagdish
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 99 (02) : 799 - 828
  • [33] Robust Iris Recognition Using Moment Invariants
    Bineet Kaur
    Sukhwinder Singh
    Jagdish Kumar
    Wireless Personal Communications, 2018, 99 : 799 - 828
  • [34] Pattern recognition using higher-order local autocorrelation coefficients
    Popovici, V
    Thiran, JP
    PATTERN RECOGNITION LETTERS, 2004, 25 (10) : 1107 - 1113
  • [35] Pattern recognition using higher-order local autocorrelation coefficients
    Popovici, V
    Thiran, JP
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 229 - 238
  • [36] Local higher-order fixpoint iteration
    Bruse, Florian
    Kreiker, Joerg
    Lange, Martin
    Saelzer, Marco
    INFORMATION AND COMPUTATION, 2022, 289
  • [37] Local Higher-Order Fixpoint Iteration
    Bruse, Florian
    Kreiker, Jorg
    Lange, Martin
    Salzer, Marco
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (326): : 97 - 113
  • [38] Local Higher-Order Graph Clustering
    Yin, Hao
    Benson, Austin R.
    Leskovec, Jure
    Gleich, David F.
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 555 - 564
  • [39] Higher-order estimates of the chromomagnetic moment of a heavy quark
    Grozin, AG
    Neubert, M
    NUCLEAR PHYSICS B, 1997, 508 (1-2) : 311 - 326
  • [40] CONVERGENCE PROPERTIES OF HIGHER-ORDER MOMENT AND CUMULANT ESTIMATES
    Li Hongwei(Institute of Information Science
    Journal of Electronics(China), 1998, (03) : 240 - 247