Noise-Robust Iris Authentication Using Local Higher-Order Moment Kernels

被引:0
|
作者
Kameyama, Keisuke [1 ]
Trung Nguyen Bao Phan [2 ]
Aizawa, Miharu [2 ]
机构
[1] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
Iris; Biometrics; Autocorrelation; Higher-order statistics; Kernel; CLASSIFICATION; RECOGNITION;
D O I
10.1007/978-3-319-26561-2_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel biometric authentication method using kernel functions of higher-order statistical feature of the iris texture is introduced. When the observed iris images include noise, direct estimation and use of Gabor and local higher-order moment (LHOM) features for iris code generation suffers from performance degradation. In order to solve this issue, we propose to use the LHOM kernel function of pairs of local textures on a single iris image. In the experiments, the proposed method using LHOM kernels of orders 2 to 6 proved to be significantly robust against noise when compared with the conventional method.
引用
收藏
页码:419 / 427
页数:9
相关论文
共 50 条
  • [1] Comparison of local higher-order moment kernel and conventional kernels in SVM for texture classification
    Kameyama, Keisuke
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 851 - 860
  • [2] Noise-robust line detection using normalized and adaptive second-order anisotropic Gaussian kernels
    Wang, Gang
    Lopez-Molina, Carlos
    de Ulzurrun, Guillermo Vidal-Diez
    De Baets, Bernard
    SIGNAL PROCESSING, 2019, 160 : 252 - 262
  • [3] HIERARCHIES OF HIGHER-ORDER KERNELS
    BERLINET, A
    PROBABILITY THEORY AND RELATED FIELDS, 1993, 94 (04) : 489 - 504
  • [4] ON NONPARAMETRIC REGRESSION WITH HIGHER-ORDER KERNELS
    SCHUCANY, WR
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 23 (02) : 145 - 151
  • [5] Noise-Robust MRI Upsampling Using Adaptive Local Steering Kernel
    Hu, Jing
    Li, Xinyan
    Wang, Xiaolong
    Li, Yan
    Wu, Xi
    IEEE ACCESS, 2020, 8 (08): : 158538 - 158548
  • [6] On higher-order moment and cumulant estimation
    Chan, Lok Hang
    Chen, Kun
    Li, Chun Xue
    Wong, Chung Wang
    Yau, Chun Yip
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (04) : 747 - 771
  • [7] HIGHER-ORDER MOMENT APPROACH OF FLUCTUATIONS
    DUMITRU, S
    PHYSICS LETTERS A, 1972, A 41 (04) : 321 - &
  • [8] INVERTIBILITY OF HIGHER-ORDER MOMENT MATRICES
    NOWAK, RD
    VANVEEN, BD
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (03) : 705 - 708
  • [9] ASYMPTOTIC EFFECTIVENESS OF SOME HIGHER-ORDER KERNELS
    JONES, MC
    WAND, MP
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 31 (01) : 15 - 21
  • [10] Higher-order Stein kernels for Gaussian approximation
    Fathi, Max
    STUDIA MATHEMATICA, 2021, 256 (03) : 241 - 258