Detection of Fraudulence in Credit Card Transactions using Machine Learning on Azure ML

被引:0
|
作者
Shivanna, Abhishek [1 ]
Ray, Sujan [1 ]
Alshouiliy, Khaldoon [1 ]
Agrawal, Dharma P. [1 ]
机构
[1] Univ Cincinnati, EECS, Ctr Distributed & Mobile Comp, Cincinnati, OH 45220 USA
关键词
Big Data; Credit Card; Finance; Machine Learning; Decision Jungle; Decision Forest; SMOTE; Online Transactions; Azure ML;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advancement of mobile and cloud technologies, there is a sharp increase in online transactions. Detecting fraudulent credit card transactions on a timely basis is a very critical and challenging problem in Financial Industry. Although online transactions are very convenient, they bring the risk of fraudulence on many aspects. Some of the key challenges in detecting fraudulence in online transactions include irregular behavioral patterns, skewed dataset i.e. high normal transaction to fraudulent transaction ratio, limited availability of data and dynamically changing environment. Every year people lose millions of dollars due to credit card fraud. There is a lack of quality research in this domain. We have used a dataset comprising of European cardholders which has 284,807 transactions to model our system. In this paper, we will design and develop credit card fraudulence detection system by training and testing two ML algorithms: Decision Forest (DF) and Decision Jungle (DJ) classifiers. Our results successfully demonstrate that DJ classifier delivers higher performance compared to DF classifier.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 50 条
  • [41] Review On Fraud Detection Methods in Credit Card Transactions
    Modi, Krishna
    Dayma, Reshma
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL (I2C2), 2017,
  • [42] Credit Card Fraud Detection System using Machine Learning Algorithms and Fuzzy Membership
    Abdulghani, Ahmed Qasim
    Ucan, Osman Nuri
    Alheeti, Khattab M. Ali
    2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, : 36 - 41
  • [43] FRAUD DETECTION IN CREDIT CARD TRANSACTIONS USING SVM AND RANDOM FOREST ALGORITHMS
    Hussain, S. K. Saddam
    Reddy, E. Sai Charan
    Akshay, K. Gangadhar
    Akanksha, T.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 1013 - 1017
  • [44] Credit Card Fraud Detection using Deep Learning
    Shenvi, Pranali
    Samant, Neel
    Kumar, Shubham
    Kulkarni, Vaishali
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [45] Credit Card Fraud Detection Using State-of-the-Art Machine Learning and Deep Learning Algorithms
    Alarfaj, Fawaz Khaled
    Malik, Iqra
    Khan, Hikmat Ullah
    Almusallam, Naif
    Ramzan, Muhammad
    Ahmed, Muzamil
    IEEE ACCESS, 2022, 10 : 39700 - 39715
  • [46] Credit Card Fraud Identification Using Machine Learning Approaches
    Kumar, Pawan
    Iqbal, Fahad
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [47] Credit Card Fraud Detection in Card-Not-Present Transactions: Where to Invest?
    Mekterovic, Igor
    Karan, Mladen
    Pintar, Damir
    Brkic, Ljiljana
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [48] Enhancing Credit Card Security: Exploiting Machine Learning for Fraud Detection
    Mahure, Sonali Jagdish
    Reddy, Vennala M.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 171 - 177
  • [49] Comparative Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Singh, Kiran Jot
    Thakur, Khushal
    Kapoor, Divneet Singh
    Sharma, Anshul
    Bajpai, Sakshi
    Sirawag, Neeraj
    Mehta, Riya
    Chaudhary, Chitransh
    Singh, Utkarsh
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 69 - 78
  • [50] Credit Risk Prediction Using Machine Learning and Deep Learning: A Study on Credit Card Customers
    Chang, Victor
    Sivakulasingam, Sharuga
    Wang, Hai
    Wong, Siu Tung
    Ganatra, Meghana Ashok
    Luo, Jiabin
    RISKS, 2024, 12 (11)