Local and linear chemical reactivity response functions at finite temperature in density functional theory

被引:56
|
作者
Franco-Perez, Marco [1 ,2 ]
Ayers, Paul W. [1 ]
Gazquez, Jose L. [2 ]
Vela, Alberto [3 ]
机构
[1] McMaster Univ, Dept Chem & Biol Chem, Hamilton, ON L8S 4M1, Canada
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico
[3] Ctr Invest & Estudios Avanzados Cinvestav, Dept Quim, Mexico City 07360, DF, Mexico
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 143卷 / 24期
基金
加拿大自然科学与工程研究理事会;
关键词
FRONTIER-ELECTRON THEORY; ABSOLUTE HARDNESS; FUKUI FUNCTIONS; CONCEPTUAL DFT; SOFTNESS; ELECTRONEGATIVITY; INDEXES; NUMBER; ENERGY; PERSPECTIVES;
D O I
10.1063/1.4938422
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Local kinetic energy and local temperature in the density-functional theory of electronic structure
    Ayers, PW
    Parr, RG
    Nagy, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (01) : 309 - 326
  • [42] Meson spectral functions at finite temperature and isospin density with the functional renormalization group
    Wang, Ziyue
    Zhuang, Pengfei
    PHYSICAL REVIEW D, 2017, 96 (01)
  • [43] DENSITY FUNCTIONAL THEORY OF NON-LINEAR OPTICAL-RESPONSE
    ZANGWILL, A
    JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (10): : 5926 - 5929
  • [44] Solvation energies from the linear response function of density functional theory
    Perez, P
    Contreras, R
    Aizman, A
    CHEMICAL PHYSICS LETTERS, 1996, 260 (1-2) : 236 - 242
  • [45] DISCONTINUITIES OF GREEN-FUNCTIONS IN FIELD-THEORY AT FINITE TEMPERATURE AND DENSITY
    KOBES, RL
    SEMENOFF, GW
    NUCLEAR PHYSICS B, 1985, 260 (3-4) : 714 - 746
  • [46] Structure, aromaticity and reactivity of corannulene and its analogues: a conceptual density functional theory and density functional reactivity theory study
    Deng, Youer
    Yu, Donghai
    Cao, Xiaofang
    Liu, Lianghong
    Rong, Chunying
    Lu, Tian
    Liu, Shubin
    MOLECULAR PHYSICS, 2018, 116 (7-8) : 956 - 968
  • [47] A LOCAL MODEL FOR THE HARDNESS KERNEL AND RELATED REACTIVITY PARAMETERS IN DENSITY-FUNCTIONAL THEORY
    FUENTEALBA, P
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (15): : 6571 - 6575
  • [48] DENSITY FUNCTIONAL THEORY AT FINITE TEMPERATURES
    STOITSOV, MV
    PETKOV, IZ
    ANNALS OF PHYSICS, 1988, 184 (01) : 121 - 147
  • [49] DENSITY FUNCTIONAL THEORY AT FINITE TEMPERATURES
    DREIZLER, RM
    NUCLEAR EQUATION OF STATE, PART A: DISCOVERY OF NUCLEAR SHOCK WAVES AND THE EOS, 1989, 216 : 521 - 532
  • [50] Holographic correlation functions at finite density and/or finite temperature
    George Georgiou
    Dimitrios Zoakos
    Journal of High Energy Physics, 2022