Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data

被引:9
|
作者
Park, Joseph [1 ,2 ]
Pao, Gerald M. [3 ,4 ]
Sugihara, George [5 ]
Stabenau, Erik [2 ]
Lorimer, Thomas [5 ]
机构
[1] United Nations Comprehens Nucl Test Ban Treaty Or, Dept Engn & Dev, Vienna, Austria
[2] US Dept Interior, South Florida Nat Resources Ctr, Homestead, FL 33031 USA
[3] Salk Inst Biol Studies, MCBL 4, La Jolla, CA 92037 USA
[4] Okinawa Inst Sci & Technol Grad Univ, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
[5] Univ Calif San Diego, Scripps Inst Oceanog Org, La Jolla, CA 92037 USA
关键词
Empirical mode decomposition; Empirical dynamic modeling; Empirical mode modeling; Data-driven analysis; Nonlinear systems; FLORIDA BAY; DIE-OFF; DECOMPOSITION; EQUATION;
D O I
10.1007/s11071-022-07311-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Data-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.
引用
收藏
页码:2147 / 2160
页数:14
相关论文
共 50 条
  • [41] Data-driven structural modeling of electricity price dynamics
    Mahler, Valentin
    Girard, Robin
    Kariniotakis, Georges
    ENERGY ECONOMICS, 2022, 107
  • [42] Modeling atmospheric data and identifying dynamics Temporal data-driven modeling of air pollutants
    Rubio-Herrero, Javier
    Marrero, Carlos Ortiz
    Fan, Wai-Tong
    JOURNAL OF CLEANER PRODUCTION, 2022, 333
  • [43] A Convex Data-Driven Approach for Nonlinear Control Synthesis
    Choi, Hyungjin
    Vaidya, Umesh
    Chen, Yongxin
    MATHEMATICS, 2021, 9 (19)
  • [44] Dynamic Modeling of a Nonlinear Two-Wheeled Robot Using Data-Driven Approach
    Khan, Muhammad Aseer
    Baig, Dur-e-Zehra
    Ashraf, Bilal
    Ali, Husan
    Rashid, Junaid
    Kim, Jungeun
    PROCESSES, 2022, 10 (03)
  • [45] Forecast of Natural Aquifer Discharge Using a Data-Driven, Statistical Approach
    Boggs, Kevin G.
    Van Kirk, Rob
    Johnson, Gary S.
    Fairley, Jerry P.
    GROUNDWATER, 2014, 52 (06) : 853 - 863
  • [46] Online Estimation and Control of Neuronal Nonlinear Dynamics Based on Data-Driven Statistical Approach
    Fukami, Shuhei
    Omori, Toshiaki
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 600 - 608
  • [47] Extracting nonlinear spatiotemporal dynamics in active dendrites using data-driven statistical approach
    Omori, Toshiaki
    Hukushima, Koji
    INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [48] A new reliability-based data-driven approach for noisy experimental data with physical constraints
    Ayensa-Jimenez, Jacobo
    Doweidar, Mohamed H.
    Sanz-Herrera, Jose A.
    Doblare, Manuel
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 752 - 774
  • [49] Fault Detection for Nonlinear Dynamic Systems With Consideration of Modeling Errors: A Data-Driven Approach
    Chen, Hongtian
    Li, Linlin
    Shang, Chao
    Huang, Biao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4259 - 4269
  • [50] Understanding Business Ecosystem Dynamics: A Data-Driven Approach
    Basole, Rahul C.
    Russell, Martha G.
    Huhtamaki, Jukka
    Rubens, Neil
    Still, Kaisa
    Park, Hyunwoo
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2015, 6 (02)