Multiscale holospectrum convolutional neural network-based fault diagnosis of rolling bearings with variable operating conditions

被引:26
|
作者
Zhang, Xining [1 ]
Liu, Shuyu [1 ]
Li, Lin [1 ]
Lei, Jiangeng [1 ]
Chang, Ge [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
convolutional neural network; feature fusion; variable operating condition; fault diagnosis; FEATURE-EXTRACTION; MACHINERY; SPEED;
D O I
10.1088/1361-6501/ac05f8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, the convolutional neural network (CNN) has been widely used in the field of intelligent fault diagnosis. However, each convolutional layer of CNN cannot take the overall and local information into account, and the feature extraction ability of CNN with fewer layers is weak. These circumstances lead to poor performance of CNN in practical fault diagnosis with variable operating conditions. To solve these problems, this paper proposes a multiscale holospectrum CNN (MH-CNN) based on the methods of two-dimensional multiscale feature fusion and decision-level feature fusion. First, the continuous wavelet transform is used to map the time-domain signal to the time-frequency plane to fully reflect the complex information contained in the signal. Then the two-dimensional multiscale feature fusion is introduced to extract features at different scales, which can take both overall and local information into account. Finally the decision-level feature fusion is introduced to fuse the features from signal in X, Y directions in the decision-level of CNN, which serves to enhance the features. By combining these methods, the proposed MH-CNN can extract more distinguishable features with a shallow structure, which can ensure the classification capability while avoiding the overfitting problem caused by overly complex networks. The effectiveness of the MH-CNN is verified using complicated data sets consisting of 16 rolling bearings with four different health conditions, two speeds and three loads. Results show that the proposed MH-CNN achieves a correct rate of 99.8% for rolling bearing fault diagnosis under variable operating conditions, which is much higher than other comparative methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Novel Fault Diagnosis Method of Rolling Bearings Combining Convolutional Neural Network and Transformer
    Liu, Wenkai
    Zhang, Zhigang
    Zhang, Jiarui
    Huang, Haixiang
    Zhang, Guocheng
    Peng, Mingda
    ELECTRONICS, 2023, 12 (08)
  • [22] Fault diagnosis of rolling bearings with recurrent neural network based autoencoders
    Liu, Han
    Zhou, Jianzhong
    Zheng, Yang
    Jiang, Wei
    Zhang, Yuncheng
    ISA TRANSACTIONS, 2018, 77 : 167 - 178
  • [23] Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition
    Cheng, Yujie
    Zhou, Bo
    Lu, Chen
    Yang, Chao
    MATERIALS, 2017, 10 (06)
  • [24] Bearing fault diagnosis based on multiscale dilated convolutional neural network
    Chao, Zhipeng
    Yang, Yinghua
    Liu, Xiaozhi
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 56 - 61
  • [25] Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism
    Wu, Hao
    Li, Jimeng
    Zhang, Qingyu
    Tao, Jinxin
    Meng, Zong
    ISA TRANSACTIONS, 2022, 130 : 477 - 489
  • [26] Lightweight Convolutional Neural Network and Its Application in Rolling Bearing Fault Diagnosis under Variable Working Conditions
    Liu, Hengchang
    Yao, Dechen
    Yang, Jianwei
    Li, Xi
    SENSORS, 2019, 19 (22)
  • [27] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [28] Application of Multi-Dimension Input Convolutional Neural Network in Fault Diagnosis of Rolling Bearings
    Zan, Tao
    Wang, Hui
    Wang, Min
    Liu, Zhihao
    Gao, Xiangsheng
    APPLIED SCIENCES-BASEL, 2019, 9 (13):
  • [29] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [30] Intelligent fault diagnosis of rolling bearings using a semi-supervised convolutional neural network
    Wu, Yaochun
    Zhao, Rongzhen
    Jin, Wuyin
    He, Tianjing
    Ma, Sencai
    Shi, Mingkuan
    APPLIED INTELLIGENCE, 2021, 51 (04) : 2144 - 2160