Nonlinear Maxwell-equations in the thin-film limit

被引:0
|
作者
Jochmann, F [1 ]
机构
[1] Tech Univ Berlin, Fak Math & Nat Wissensch 2, Inst Math, D-10623 Berlin, Germany
关键词
ferromagnetism; nonlinear dielectric polarization; Maxwell's equations; thin-film limit;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned the transient Landau Lifschitz equations for the magnetic moment without exchange interaction coupled with Maxwell's equations as well as the equations for a nonlinear dielectric polarization. The main goals is the thin film limit for very flat domains. In this limit one obtains ordinary differential equations for the magnetic moment and the dielectric polarization respectively.
引用
收藏
页码:189 / 210
页数:22
相关论文
共 50 条
  • [21] On limit equations of nonlinear elasticity theory on thin networks
    Zhikov, V. V.
    Pastukhova, S. E.
    DOKLADY MATHEMATICS, 2006, 73 (03) : 424 - 429
  • [22] On limit equations of nonlinear elasticity theory on thin networks
    V. V. Zhikov
    S. E. Pastukhova
    Doklady Mathematics, 2006, 73 : 424 - 429
  • [23] Effect of the thin-film limit on the measurable optical properties of graphene
    Jakub Holovský
    Sylvain Nicolay
    Stefaan De Wolf
    Christophe Ballif
    Scientific Reports, 5
  • [24] Thin-film limit formalism applied to surface defect absorption
    Holovsky, Jakub
    Ballif, Christophe
    OPTICS EXPRESS, 2014, 22 (25): : 31466 - 31472
  • [25] TRAVELING-WAVE SOLUTIONS TO THIN-FILM EQUATIONS
    BOATTO, S
    KADANOFF, LP
    OLLA, P
    PHYSICAL REVIEW E, 1993, 48 (06): : 4423 - 4431
  • [26] Numerical solutions of thin-film equations for polymer flows
    Thomas Salez
    Joshua D. McGraw
    Sara L. Cormier
    Oliver Bäumchen
    Kari Dalnoki-Veress
    Elie Raphaël
    The European Physical Journal E, 2012, 35
  • [27] Numerical solutions of thin-film equations for polymer flows
    Salez, Thomas
    McGraw, Joshua D.
    Cormier, Sara L.
    Baeumchen, Oliver
    Dalnoki-Veress, Kari
    Raphael, Elie
    EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (11):
  • [28] EXISTENCE OF POSITIVE SOLUTIONS TO STOCHASTIC THIN-FILM EQUATIONS
    Fischer, Julian
    Gruen, Guenther
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 411 - 455
  • [29] Effect of the thin-film limit on the measurable optical properties of graphene
    Holovsky, Jakub
    Nicolay, Sylvain
    De Wolf, Stefaan
    Ballif, Christophe
    SCIENTIFIC REPORTS, 2015, 5
  • [30] Aqueous process to limit hydration of thin-film inorganic oxides
    Perkins, Cory K.
    Mansergh, Ryan H.
    Park, Deok-Hie
    Nanayakkara, Charith E.
    Ramos, Juan C.
    Decker, Shawn R.
    Huang, Yu
    Chabal, Yves J.
    Keszler, Douglas A.
    SOLID STATE SCIENCES, 2016, 61 : 106 - 110