Density Functional Theory Approach to Noncovalent Interactions via Monomer Polarization and Pauli Blockade

被引:34
|
作者
Rajchel, Lukasz [1 ,2 ]
Zuchowski, Piotr S. [3 ]
Szczesniak, Malgorzata M. [1 ]
Chalasinski, Grzegorz [2 ]
机构
[1] Oakland Univ, Dept Chem, Rochester, MI 48309 USA
[2] Univ Warsaw, Fac Chem, PL-02093 Warsaw, Poland
[3] Univ Durham, Dept Chem, Durham DH1 3LE, England
关键词
GENERALIZED GRADIENT APPROXIMATION; INTERACTION ENERGY; INTERMOLECULAR FORCES; DISPERSION ENERGIES; COMPLEXES; DIMER;
D O I
10.1103/PhysRevLett.104.163001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a "DFT + dispersion'' treatment which avoids double counting of dispersion terms by deriving the dispersion-free density functional theory (DFT) interaction energy and combining it with DFT-based dispersion. The formalism involves self-consistent polarization of DFT monomers restrained by the exclusion principle via the Pauli-blockade technique. Any exchange-correlation potential can be used within monomers, but only the exchange operates between them. The applications to rare-gas dimers, ion-rare-gas interactions, and hydrogen bonds demonstrate that the interaction energies agree with benchmark values.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Current density functional theory for optical spectra: A polarization functional
    de Boeij, PL
    Kootstra, F
    Berger, JA
    van Leeuwen, R
    Snijders, JG
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (05): : 1995 - 1999
  • [32] Noncovalent intermolecular interactions between dehydroepiandrosterone and the active site of human dehydroepiandrosterone sulphotransferase: A density functional theory based treatment
    Astani, Elahe
    Heshmati, Emran
    Chen, Chun-Jung
    Hadipour, Nasser L.
    Shekarsaraei, Setareh
    CHEMICAL PHYSICS LETTERS, 2016, 649 : 123 - 129
  • [33] Long-range dispersion-corrected density functional for noncovalent interactions
    Tang, Hong
    Tao, Jianmin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (26):
  • [34] Quantification of the Strength of π-Noncovalent Interactions in Molecular Balances using Density Functional Methods
    Nunar, Luka
    Aliev, Abil E.
    CHEMISTRY-METHODS, 2023, 3 (01):
  • [35] Analysis of Density-Functional Errors for Noncovalent Interactions between Charged Molecules
    Otero-de-la-Roza, A.
    Johnson, Erin R.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (02): : 353 - 361
  • [36] Dispersion Corrections Improve the Accuracy of Both Noncovalent and Covalent Interactions Energies Predicted by a Density-Functional Theory Approximation
    van Santen, Jeffrey A.
    DiLabio, Gino A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (25): : 6703 - 6713
  • [37] Perhalomethyl Chromones: Spectroscopic, X-Ray Diffraction, Hirshfeld Surface, and Density Functional Theory Studies of the Noncovalent Interactions
    Espitia Cogollo, Edeimis
    Echeverria, Gustavo A.
    Piro, Oscar E.
    Jios, Jorge L.
    Ulic, Sonia E.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2022, 57 (11)
  • [38] Establishing the accuracy of density functional approaches for the description of noncovalent interactions in ionic liquids
    Kim, Minho
    Gould, Tim
    Izgorodina, Ekaterina I.
    Rocca, Dario
    Lebegue, Sebastien
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (45) : 25558 - 25564
  • [39] Functional expansion approach in density functional theory
    Liu, SB
    Parr, RG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 244 - COMP
  • [40] Discontinuous behavior of the Pauli potential in density functional theory as a function of the electron number
    Kraisler, Eli
    Schild, Axel
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):