Time Series Path Integral Expansions for Stochastic Processes

被引:1
|
作者
Greenman, Chris D. [1 ]
机构
[1] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Birth-death process; Doi Peliti; Path integral; Time series expansion; REACTION-DIFFUSION PROCESSES; DEATH PROCESSES; QUADRATIC BIRTH; RENORMALIZATION; FLUCTUATIONS; DYNAMICS;
D O I
10.1007/s10955-022-02912-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A form of time series path integral expansion is provided that enables both analytic and numerical temporal effect calculations for a range of stochastic processes. All methods rely on finding a suitable reproducing kernel associated with an underlying representative algebra to perform the expansion. Birth-death processes can be analysed with these techniques, using either standard Doi-Peliti coherent states, or the su(1, 1) Lie algebra. These result in simplest expansions for processes with linear or quadratic rates, respectively. The techniques are also adapted to diffusion processes. The resulting series differ from those found in standard Dyson time series field theory techniques.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A path integral approach to inclusive processes
    Nachtmann, O
    Rauscher, A
    EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (04): : 665 - 676
  • [42] PATH INTEGRAL APPROACH TO DISSIPATIVE PROCESSES
    SAKAGAMI, M
    KUBOTA, T
    PROGRESS OF THEORETICAL PHYSICS, 1986, 76 (02): : 548 - 560
  • [43] High-accuracy discrete path integral solutions for stochastic processes with noninvertible diffusion matrices
    Drozdov, AN
    PHYSICAL REVIEW E, 1997, 55 (03): : 2496 - 2508
  • [44] Stochastic integral of two parameter processes
    Dinculeanu, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (06): : 527 - 530
  • [45] Convergence of integral functionals of stochastic processes
    Berkes, I
    Horváth, L
    ECONOMETRIC THEORY, 2006, 22 (02) : 304 - 322
  • [46] ADDITIVE SUMMABLE PROCESSES AND THEIR STOCHASTIC INTEGRAL
    Dinculeanu, Nicolae
    Mocioalca, Oana
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2006, 55 (02) : 257 - 286
  • [47] STOCHASTIC INTEGRAL AND DIFFUSION-PROCESSES
    PENKOV, NV
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1985, 58 (05): : 1059 - 1060
  • [48] STOCHASTIC INTERPRETATION OF FEYNMAN PATH-INTEGRAL
    HABA, Z
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) : 6344 - 6359
  • [49] Path-integral representation for a stochastic sandpile
    Dickman, R
    Vidigal, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (34): : 7269 - 7285
  • [50] Path Integral Methods for Stochastic Differential Equations
    Chow, Carson C.
    Buice, Michael A.
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2015, 5