SIMULATION STUDY ON THE TUBULAR MICROREACTOR FOR HYDROGEN PRODUCTION BY STEAM REFORMING OF METHANOL

被引:1
|
作者
Yuan, Zhanpeng [1 ]
Chen, Xueye [2 ]
机构
[1] Liaoning Univ Technol, Fac Mech Engn & Automat, Jinzhou 121001, Liaoning, Peoples R China
[2] Ludong Univ, Coll Transportat, Yantai 264025, Shandong, Peoples R China
关键词
Hydrogen production from methanol; microreactor; catalytic reaction; simulation analysis; WASTE-HEAT RECUPERATION; CATALYST SUPPORT; COPPER FOAM; SURFACE MICROCHANNELS; DESIGN; OPTIMIZATION; RECOVERY; SYSTEM;
D O I
10.1142/S0218625X22500676
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to reduce the carbon emissions of fuel vehicles, hydrogen has received extensive attention as a new clean energy. In this paper, a packed-bed microreactor for hydrogen production from methanol steam is designed for use in hydrogen fuel cells. By considering the heating gas velocity in the heating tubes, the inlet temperature of the microreactor, the size and number of heating tubes, inlet pressure, pellet porosity and thermal conductivity, parameters such as methanol conversion rates and hydrogen concentration were evaluated. First, the rate at which the gas is heated has a great influence on the reaction results. Choosing a larger heating gas velocity leads to an increase in the temperature inside the microreactor, thereby increasing the CH3OH conversion, resulting in a higher H-2 concentration at the outlet. Changing the inlet temperature of the microreactor affects the reaction speed, but has little effect on the H-2 concentration at the outlet. By studying the radius and number of heating tubes, we selected three different sets of data to compare the conversion rate of reactants and the concentration of products, and finally determined the optimal parameters as R = 4 mm and N = 8. Second, the inlet pressure has little effect on the H-2 concentration at the outlet, but has a significant effect on the reaction speed. Particle porosity has no effect on the reaction results. Finally, the larger the thermal conductivity, the higher the temperature in the microreactor, which is more conducive to the reaction.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Methanol steam reforming for hydrogen production
    Palo, Daniel R.
    Dagle, Robert A.
    Holladay, Jamie D.
    CHEMICAL REVIEWS, 2007, 107 (10) : 3992 - 4021
  • [12] A SOLAR POWERED MICROREACTOR FOR HYDROGEN PRODUCTION BY METHANOL REFORMING
    Zimmerman, Raul
    Morrison, Graham
    Rosengarten, Gary
    ES2008: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 391 - 396
  • [13] Design and performance evaluation of flexible tubular microreactor for methanol steam reforming reaction
    Zhou, Shupan
    Zhong, Yuchen
    Lin, Weiming
    You, Huihui
    Li, Xinying
    Wu, Linjing
    Zhou, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) : 36022 - 36031
  • [14] Integration design optimization of self-thermal methanol steam reforming microreactor for hydrogen production
    Zheng, Tianqing
    Zhou, Dongjie
    Zhan, Youji
    Xu, Yongchao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (84) : 32642 - 32653
  • [15] Hydrogen production by methanol steam reforming in a disc microreactor with tree-shaped flow architectures
    Yao, Feng
    Chen, Yongping
    Peterson, G. P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 64 : 418 - 425
  • [16] PARAMETRIC STUDY OF HYDROGEN PRODUCTION FROM ETHANOL STEAM REFORMING IN A MEMBRANE MICROREACTOR
    de-Souza, M.
    Zanin, G. M.
    Moraes, F. F.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 30 (02) : 355 - 367
  • [17] Simulations of Hydrogen Production by Methanol Steam Reforming
    Chiu, Yu-Jen
    Chiu, Han-Chieh
    Hsieh, Ren-Horn
    Jang, Jer-Huan
    Jiang, Bo-Yi
    5TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS ENGINEERING (CPESE 2018), 2019, 156 : 38 - 42
  • [18] Methanol steam reforming for hydrogen production in a minireactor
    Wang, Feng
    Li, Longjian
    Qi, Bo
    Cui, Wenzhi
    Xin, Mingdao
    Chen, Qinghua
    Deng, Lianfeng
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2008, 42 (04): : 509 - 514
  • [19] Optimization of methanol steam reforming for hydrogen production
    Pan, L.-W. (panlw@dicp.ac.cn), 2013, Science Press (41):
  • [20] Intensification of hydrogen production by methanol steam reforming
    Sanz, Oihane
    Velasco, Ion
    Perez-Miqueo, Inigo
    Poyato, Rosalia
    Antonio Odriozola, Jose
    Montes, Mario
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (10) : 5250 - 5259