Parallel Coordinate Descent Algorithms for Sparse Phase Retrieval

被引:0
|
作者
Yang, Yang [1 ]
Pesavento, Marius [2 ]
Eldar, Yonina C. [3 ]
Ottersten, Bjoern [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, L-1855 Luxembourg, Luxembourg
[2] Tech Univ Darmstadt, Commun Syst Grp, D-64283 Darmstadt, Germany
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
欧盟地平线“2020”; 以色列科学基金会;
关键词
DC Programming; Majorization Minimization; Phase Retrieval; Successive Convex Approximation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we study the sparse phase retrieval problem, that is, to estimate a sparse signal from a small number of noisy magnitude-only measurements. We propose an iterative soft-thresholding with exact line search algorithm (STELA). It is a parallel coordinate descent algorithm, which has several attractive features: i) fast convergence, as the approximate problem solved at each iteration exploits the original problem structure, ii) low complexity, as all variable updates have a closed-form expression, iii) easy implementation, as no hyperparameters are involved, and iv) guaranteed convergence to a stationary point for general measurements. These advantages are also demonstrated by numerical tests.
引用
收藏
页码:7670 / 7674
页数:5
相关论文
共 50 条
  • [21] COORDINATE DESCENT ALGORITHMS FOR LASSO PENALIZED REGRESSION
    Wu, Tong Tong
    Lange, Kenneth
    ANNALS OF APPLIED STATISTICS, 2008, 2 (01): : 224 - 244
  • [22] Massively Parallel Implementation of Sparse Message Retrieval Algorithms in Clustered Clique Networks
    Tigreat, Philippe
    Horrein, Pierre-Henri
    Gripon, Vincent
    2016 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS 2016), 2016, : 935 - 939
  • [23] An asynchronous parallel stochastic coordinate descent algorithm
    Liu, Ji
    Wright, Stephen J.
    Ré, Christopher
    Bittorf, Victor
    Sridhar, Srikrishna
    Journal of Machine Learning Research, 2015, 16 : 285 - 322
  • [24] Sparse Model Construction using Coordinate Descent Optimization
    Hong, Xia
    Guo, Yi
    Chen, Sheng
    Gao, Junbin
    2013 18TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2013,
  • [25] ADAPTIVE RANDOMIZED COORDINATE DESCENT FOR SOLVING SPARSE SYSTEMS
    Onose, Alexandru
    Dumitrescu, Bogdan
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 721 - 725
  • [26] SPARSE CYCLIC COORDINATE DESCENT FOR EFFICIENT FREQUENCY ESTIMATION
    Guzman, Yuneisy Garcia
    Lunglmayr, Michael
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 440 - 444
  • [27] Fast block coordinate descent for sparse group lasso
    Ida Y.
    Fujiwara Y.
    Kashima H.
    Transactions of the Japanese Society for Artificial Intelligence, 2021, 36 (01) : 1 - 11
  • [28] An Asynchronous Parallel Stochastic Coordinate Descent Algorithm
    Liu, Ji
    Wright, Stephen J.
    Re, Christopher
    Bittorf, Victor
    Sridhar, Srikrishna
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 469 - 477
  • [29] Accelerated Block Coordinate Descent for Sparse Group Lasso
    Catalina, Alejandro
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [30] ONLINE COORDINATE DESCENT FOR ADAPTIVE ESTIMATION OF SPARSE SIGNALS
    Angelosante, Daniele
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 369 - 372