Parallel Coordinate Descent Algorithms for Sparse Phase Retrieval

被引:0
|
作者
Yang, Yang [1 ]
Pesavento, Marius [2 ]
Eldar, Yonina C. [3 ]
Ottersten, Bjoern [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, L-1855 Luxembourg, Luxembourg
[2] Tech Univ Darmstadt, Commun Syst Grp, D-64283 Darmstadt, Germany
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
欧盟地平线“2020”; 以色列科学基金会;
关键词
DC Programming; Majorization Minimization; Phase Retrieval; Successive Convex Approximation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we study the sparse phase retrieval problem, that is, to estimate a sparse signal from a small number of noisy magnitude-only measurements. We propose an iterative soft-thresholding with exact line search algorithm (STELA). It is a parallel coordinate descent algorithm, which has several attractive features: i) fast convergence, as the approximate problem solved at each iteration exploits the original problem structure, ii) low complexity, as all variable updates have a closed-form expression, iii) easy implementation, as no hyperparameters are involved, and iv) guaranteed convergence to a stationary point for general measurements. These advantages are also demonstrated by numerical tests.
引用
收藏
页码:7670 / 7674
页数:5
相关论文
共 50 条
  • [1] Coordinate descent algorithms for phase retrieval
    Zeng, Wen-Jun
    So, H. C.
    SIGNAL PROCESSING, 2020, 169 (169)
  • [2] Coordinate descent algorithms
    Wright, Stephen J.
    MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 3 - 34
  • [3] Adaptive Randomized Coordinate Descent for Sparse Systems: Lasso and Greedy Algorithms
    Onose, Alexandru
    Dumitrescu, Bogdan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (15) : 4091 - 4101
  • [4] Sparse Representation and Dictionary Learning Based on Alternating Parallel Coordinate Descent
    Tang, Zunyi
    Tamura, Toshiyo
    Ding, Shuxue
    Li, Zhenni
    2013 INTERNATIONAL JOINT CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY & UBI-MEDIA COMPUTING (ICAST-UMEDIA), 2013, : 491 - +
  • [5] Coordinate descent algorithms
    Stephen J. Wright
    Mathematical Programming, 2015, 151 : 3 - 34
  • [6] Block coordinate descent algorithms for large-scale sparse multiclass classification
    Blondel, Mathieu
    Seki, Kazuhiro
    Uehara, Kuniaki
    MACHINE LEARNING, 2013, 93 (01) : 31 - 52
  • [7] Block coordinate descent algorithms for large-scale sparse multiclass classification
    Mathieu Blondel
    Kazuhiro Seki
    Kuniaki Uehara
    Machine Learning, 2013, 93 : 31 - 52
  • [8] Sparse Phase Retrieval: Convex Algorithms and Limitations
    Jaganathan, Kishore
    Oymak, Samet
    Hassibi, Babak
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1022 - 1026
  • [9] On the complexity of parallel coordinate descent
    Tappenden, Rachael
    Takac, Martin
    Richtarik, Peter
    OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (02): : 372 - 395
  • [10] Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms
    Jaganathan, Kishore
    Oymak, Samet
    Hassibi, Babak
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (09) : 2402 - 2410