GENERATING PYTHAGOREAN TRIPLES OF A GIVEN HEIGHT

被引:1
|
作者
Austin, Jathan [1 ]
机构
[1] Salisbury Univ, Dept Math & Comp Sci, Salisbury, MD 21801 USA
关键词
Pythagorean triple; height; leg difference; Height-Excess Enumeration Theorem;
D O I
10.35834/2019/3102136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The height of a Pythagorean triple (a, b, c) is defined as the difference c- b. In this paper, building on the Height-Excess Enumeration Theorem, we show how to generate primitive Pythagorean triples of a given height using powers of a single matrix. Then, we briefly discuss other matrices that both map any Pythagorean triple to another and also preserve a triple's height. We also note how Pythagorean triples with a given leg difference can be generated using matrices.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 50 条
  • [21] PRIMITIVE PYTHAGOREAN TRIPLES
    BERNSTEIN, L
    FIBONACCI QUARTERLY, 1982, 20 (03): : 227 - 241
  • [22] FIBONACCI PYTHAGOREAN TRIPLES
    FRIETAG, HT
    PRIELIPP, B
    FIBONACCI QUARTERLY, 1981, 19 (02): : 186 - 186
  • [23] On Matrix Pythagorean Triples
    Arnold, Maxim
    Eydelzon, Anatoly
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (02): : 158 - 160
  • [24] GENERALIZED PYTHAGOREAN TRIPLES
    HILDEBRAND, WJ
    COLLEGE MATHEMATICS JOURNAL, 1985, 16 (01): : 48 - 52
  • [25] Semiperimeter and Pythagorean Triples
    Gordon, Russell A.
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (08): : 680 - 692
  • [26] Mean crowds and Pythagorean triples
    Siler, JR
    FIBONACCI QUARTERLY, 1998, 36 (04): : 323 - 326
  • [27] ALMOST-PYTHAGOREAN TRIPLES
    WEXLER, C
    GOLDBERG, M
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (06): : 738 - &
  • [28] A METHOD OF OBTAINING PYTHAGOREAN TRIPLES
    NISHI, A
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (09): : 869 - 871
  • [29] ON THE ALGEBRAIC STRUCTURE OF PYTHAGOREAN TRIPLES
    Anatriello, Giuseppina
    Vincenzi, Giovanni
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2024, 102 (01):
  • [30] Frobenius numbers of Pythagorean triples
    Gil, Byung Keon
    Han, Ji-Woo
    Kim, Tae Hyun
    Koo, Ryun Han
    Lee, Bon Woo
    Lee, Jaehoon
    Nam, Kyeong Sik
    Park, Hyeon Woo
    Park, Poo-Sung
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 613 - 619