Yangians and transition operators

被引:4
|
作者
Ge, ML [1 ]
Kwek, LC
Oh, CH
Xue, K
机构
[1] Nankai Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 119260, Singapore
[3] NE Normal Univ, Dept Phys, Changchun 130024, Peoples R China
关键词
D O I
10.1023/A:1022852722391
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Yangian has emerged as a underlying algebraic structure for quantum spin chains with inverse-square exchange interactions. Recently, it has also been found that the Yangian can be regarded as an extended dipole operator or transition operator connecting different highest weight states. In this report, we describe how Yangian can be used to construct the shift operators associated with the spin chain.
引用
收藏
页码:1229 / 1234
页数:6
相关论文
共 50 条
  • [1] Baxter Q-operators and representations of Yangians
    Bazhanov, Vladimir V.
    Frassek, Rouven
    Lukowski, Tomasz
    Meneghelli, Carlo
    Staudacher, Matthias
    NUCLEAR PHYSICS B, 2011, 850 (01) : 148 - 174
  • [2] Orthogonal and symplectic Yangians and Yang-Baxter R-operators
    Isaev, A. P.
    Karakhanyan, D.
    Kirschner, R.
    NUCLEAR PHYSICS B, 2016, 904 : 124 - 147
  • [3] THE p-CENTRE OF YANGIANS AND SHIFTED YANGIANS
    Brundan, Jonathan
    Topley, Lewis
    MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (04) : 617 - 657
  • [4] Yangians and Yang-Baxter R-operators for ortho-symplectic superalgebras
    Fuksa, J.
    Isaev, A. P.
    Karakhanyan, D.
    Kirschner, R.
    NUCLEAR PHYSICS B, 2017, 917 : 44 - 85
  • [5] Braided Yangians
    Gurevich, Dimitri
    Saponov, Pavel
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 124 - 143
  • [6] Transition operators
    Alcock-Zeilinger, J.
    Weigert, H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (05)
  • [7] ON AFFINE YANGIANS
    BOYARCHENKO, SI
    LEVENDORSKII, SZ
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (04) : 269 - 274
  • [8] Scattering in Twisted Yangians
    Avan, Jean
    Doikou, Anastasia
    Karaiskos, Nikos
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [9] Verma Modules for Yangians
    Y. Billig
    V. Futorny
    A. Molev
    Letters in Mathematical Physics, 2006, 78 : 1 - 16
  • [10] Yangians and transvector algebras
    Molev, AI
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 231 - 253