Baxter Q-operators and representations of Yangians

被引:72
|
作者
Bazhanov, Vladimir V. [1 ,2 ]
Frassek, Rouven [3 ,4 ]
Lukowski, Tomasz [3 ,4 ,5 ]
Meneghelli, Carlo [3 ,4 ]
Staudacher, Matthias [3 ,4 ,6 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
[3] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
[4] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[5] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[6] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
关键词
CONFORMAL FIELD-THEORY; INTEGRABLE STRUCTURE; BETHE-ANSATZ; R-MATRIX; QUANTUM; EQUATIONS; MODEL; QUANTIZATION;
D O I
10.1016/j.nuclphysb.2011.04.006
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We develop a new approach to Baxter Q-operators by relating them to the theory of Yangians, which are the simplest examples for quantum groups. Here we open up a new chapter in this theory and study certain degenerate solutions of the Yang Baxter equation connected with harmonic oscillator algebras. These infinite-state solutions of the Yang Baxter equation serve as elementary, "partonic" building blocks for other solutions via the standard fusion procedure. As a first example of the method we consider gf(n) compact spin chains and derive the full hierarchy of operatorial functional equations for all related commuting transfer matrices and Q-operators. This leads to a systematic and transparent solution of these chains, where the nested Bethe equations are derived in an entirely algebraic fashion, without any reference to the traditional Bethe Ansatz techniques. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:148 / 174
页数:27
相关论文
共 50 条
  • [1] On Baxter Q-operators for the Toda chain
    Pronko, GP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (46): : 8251 - 8266
  • [2] On Baxter Q-Operators and their Arithmetic Implications
    Gerasimov, Anton
    Lebedev, Dimitri
    Oblezin, Sergey
    LETTERS IN MATHEMATICAL PHYSICS, 2009, 88 (1-3) : 3 - 30
  • [3] New relations in the algebra of the Baxter Q-operators
    Belavin, AA
    Odesskii, AV
    Usmanov, RA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 130 (03) : 323 - 350
  • [4] New Relations in the Algebra of the Baxter Q-Operators
    A. A. Belavin
    A. V. Odesskii
    R. A. Usmanov
    Theoretical and Mathematical Physics, 2002, 130 : 323 - 350
  • [5] From Baxter Q-operators to local charges
    Frassek, Rouven
    Meneghelli, Carlo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [6] Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators
    Tsuboi, Zengo
    NUCLEAR PHYSICS B, 2014, 886 : 1 - 30
  • [7] Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators
    Baseilhac, Pascal
    Tsuboi, Zengo
    NUCLEAR PHYSICS B, 2018, 929 : 397 - 437
  • [8] Baxter's Q-operators for supersymmetric spin chains
    Bazhanov, Vladimir V.
    Tsuboi, Zengo
    NUCLEAR PHYSICS B, 2008, 805 (03) : 451 - 516
  • [9] Baxter Operators in Ruijs']jsenaars Hyperbolic System I: Commutativity of Q-Operators
    Belousov, N.
    Derkachov, S.
    Kharchev, S.
    Khoroshkin, S.
    ANNALES HENRI POINCARE, 2024, 25 (07): : 3207 - 3258
  • [10] Baxter Q-operators of the XXZ chain and R-matrix factorization
    Derkachov, S
    Karakhanyan, D
    Kirschner, R
    NUCLEAR PHYSICS B, 2006, 738 (03) : 368 - 390