Homogenization of the Poisson equation with Dirichlet conditions in random perforated domains

被引:6
|
作者
Calvo-Jurado, Carmen [1 ]
Casado-Diaz, Juan [2 ]
Luna-Laynez, Manuel [2 ]
机构
[1] Univ Extremadura, Escuela Politecn, Dept Matemat, Caceres 10003, Spain
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41012 Seville, Spain
关键词
Homogenization; Random perforated domains; 2-SCALE CONVERGENCE;
D O I
10.1016/j.cam.2014.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a sequence of open sets O-epsilon contained in a fixed bounded open set O of R-N, N >= 3, which vary randomly with epsilon > 0. The corresponding distribution function is given by an ergodic measure preserving dynamical system in such a way that O\O-epsilon, is a union of closed sets of size epsilon(N/N-2) and the distance between them of order epsilon. For this sequence O-epsilon we study the asymptotic behavior of the solutions of the Poisson equation with Dirichlet conditions on partial derivative O-epsilon. Similarly to the classical Cioranescu-Murat result for the deterministic problem we show the existence of a new term of zero order in the limit equation. We emphasize the fact that this new term is deterministic. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 50 条
  • [21] The Method of Reflections, Homogenization and Screening for Poisson and Stokes Equations in Perforated Domains
    Richard M. Höfer
    Juan J. L. Velázquez
    Archive for Rational Mechanics and Analysis, 2018, 227 : 1165 - 1221
  • [22] Homogenization on Perforated Domains
    Rozehnalova, P.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [23] Homogenization and correctors for the wave equation in non periodic perforated domains
    Donato, Patrizia
    Gaveau, Florian
    NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (01) : 97 - 124
  • [24] Homogenization of a convection–diffusion equation in perforated domains with a weak adsorption
    B. Amaziane
    M. Goncharenko
    L. Pankratov
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 592 - 611
  • [26] Homogenization of Dirichlet parabolic systems with variable monotone operators in general perforated domains
    Calvo-Jurado, C
    Casado-Díaz, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 1231 - 1248
  • [27] Homogenization of a parabolic operator with Signorini boundary conditions in perforated domains
    Beliaev, A
    ASYMPTOTIC ANALYSIS, 2004, 40 (3-4) : 255 - 268
  • [28] HOMOGENIZATION OF ELLIPTIC PROBLEMS IN PERFORATED DOMAINS WITH MIXED BOUNDARY CONDITIONS
    Cioranescu, Doina
    Hammouda, A. Ould
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 53 (5-6): : 389 - 406
  • [29] Multicontinuum homogenization in perforated domains
    Xie, Wei
    Efendiev, Yalchin
    Huang, Yunqing
    Leung, Wing Tat
    Yang, Yin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 530
  • [30] Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption
    Amaziane, B.
    Goncharenko, M.
    Pankratov, L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (04): : 592 - 611