Bayesian Modeling of Visual Attention

被引:0
|
作者
Xu, Jinhua [1 ]
机构
[1] E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200062, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II | 2012年 / 7664卷
关键词
Visual attention; Visual saliency; Bayesian modeling; SALIENCY; SEARCH; SCENES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The mechanism in the brain that determines which part of the multitude of sensory data is currently of most interest is called selective attention. There are two kinds of attention cues, stimulus-driven bottom-up cues and goal-driven top-down cues determined by cognitive phenomena like knowledge, expectations, reward, and current goals. In this paper, we propose a Bayesian approach that explains the optimal integration of top-down cues and bottom-up cues. The top down cues include appearance feature, contexts, and locations of a target. The bottom up attention (saliency) is defined as the joint probability of the local feature and context at a location in the scene. The feature and context is organized in a pyramid structure. In this way, multiscale saliency is easily implemented. We demonstrate that the proposed visual saliency effectively predicts human gaze in free-viewing of natural scenes.
引用
收藏
页码:92 / 99
页数:8
相关论文
共 50 条
  • [31] Joint Visual Attention Modeling for Naturally Interacting Robotic Agents
    Yucel, Zeynep
    Salah, Albert Ali
    Mericli, Cetin
    Mericli, Tekin
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 241 - +
  • [32] Supervisors' Visual Attention Allocation Modeling Using Hybrid Entropy
    Bao, Haifeng
    Fang, Weining
    Guo, Beiyuan
    Wang, Peng
    ENTROPY, 2019, 21 (04)
  • [33] Modeling the Influence of Action on Spatial Attention in Visual Interactive Environments
    Borji, Ali
    Sihite, Dicky N.
    Itti, Laurent
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 444 - 450
  • [34] Dynamic Markov random fields for stochastic modeling of visual attention
    Kimura, Akisato
    Pang, Derek
    Takeuchi, Tatsuto
    Yamato, Junji
    Kashino, Kunio
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 340 - 344
  • [35] Visual Attention Modeling for Video Quality Assessment With Structural Similarity
    Fu, Bin
    Lu, Zhaoming
    Wen, Xiangming
    Wang, Luhan
    Shao, Hua
    2013 16TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS (WPMC), 2013,
  • [36] Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention
    Droste, Richard
    Cai, Yifan
    Sharma, Harshita
    Chatelain, Pierre
    Drukker, Lior
    Papageorghiou, Aris T.
    Noble, J. Alison
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 592 - 604
  • [37] Pilot's visual attention allocation modeling under fatigue
    Wu, Xu
    Wanyan, Xiaoru
    Zhuang, Damin
    TECHNOLOGY AND HEALTH CARE, 2015, 23 : S373 - S381
  • [38] Modeling bottom-up visual attention for color images
    Lang, Congyan
    Xu, De
    Li, Ning
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (03): : 869 - 872
  • [39] Lightweight Contrast Modeling for Attention-Aware Visual Localization
    Huang, Lili
    Li, Guanbin
    Li, Ya
    Lin, Liang
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 2104 - 2110
  • [40] MODELING VISUAL AFFORDANCES: THE SELECTIVE ATTENTION FOR ACTION MODEL (SAAM)
    Boehme, Christoph
    Heinke, Dietmar
    CONNECTIONIST MODELS OF BEHAVIOUR AND COGNITION II, 2009, 18 : 39 - 50