Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage

被引:492
|
作者
Li, Yunming [1 ]
Lu, Yaxiang [1 ]
Zhao, Chenglong [1 ]
Hu, Yong-Sheng [1 ]
Titirici, Maria-Magdalena [2 ,3 ]
Li, Hong [1 ]
Huang, Xuejie [1 ]
Chen, Liquan [1 ]
机构
[1] Univ Chinese Acad Sci, Beijing Key Lab New Energy Mat & Devices,Inst Phy, Natl Lab Condensed Matter Phys,Sch Phys Sci, Key Lab Renewable Energy,Chinese Acad Sci, Beijing 100190, Peoples R China
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
[3] Queen Mary Univ London, Mat Res Inst, London E1 4NS, England
关键词
Energy storage; Sodium-ion batteries; Cathode materials; Anode materials; PERFORMANCE ANODE MATERIAL; RECHARGEABLE LITHIUM BATTERIES; SINGLE-CRYSTALLINE NA0.44MNO2; ANIONIC REDOX CHEMISTRY; HIGH-CAPACITY ANODE; HIGH-RATE CATHODE; LONG CYCLE LIFE; IN-SITU XRD; POSITIVE ELECTRODE; ELECTROCHEMICAL INTERCALATION;
D O I
10.1016/j.ensm.2017.01.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy storage plays an important role in the development of portable electronic devices, electric vehicles and large-scale electrical energy storage applications for renewable energy, such as solar and wind power. Lithiumion batteries (LIBs) have dominated most of the first two applications due to the highest energy density and long cycle life. Room-temperature sodium-ion batteries (SIBs) have re-attracted great attention recently, especially for large-scale electrical energy storage applications. This is on one hand due to the abundant and widely distributed sodium resources and on the other hand due to the predicted lower cost from using Na, as well as Al current collectors for both cathode and anode. One of the important advantages as well as challenges in SIBs is to use low-cost materials as active electrodes to compete with LIBs in terms of cost/kWh. In this review, both cathode and anode materials for SIBs are reviewed, with focus on the latest development of electrode materials from 2013. Advantages, disadvantages and future directions on the existing electrode materials will be discussed based on the literature and our experience. Although a large number of electrode materials have been reported in the literature, SIBs are still facing grand challenges, which can be overcome by continuing the research efforts to search for new electrode materials with better performance, lower cost, higher safety and more stable interface with electrolyte. Once the right electrode materials are discovered throughout a fundamental understanding of the intimate relationships between its structure and performance, we believe that SIBs with low cost and long life will have promising prospects in low-speed electric vehicles (e.g., bicycle, quadricycle, etc.) and large-scale energy storage in the future.
引用
收藏
页码:130 / 151
页数:22
相关论文
共 50 条
  • [21] Bituminous Coal as Low-Cost Anode Materials for Sodium-Ion and Lithium-Ion Batteries
    Abou-Rjeily, John
    Laziz, Nour Ait
    Autret-Lambert, Cecile
    Sougrati, Moulay Tahar
    Toufaily, Joumana
    Outzourhit, Abdelkader
    Ghamouss, Fouad
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [22] Interlayer Doping in Layered Vanadium Oxides for Low-cost Energy Storage: Sodium-ion Batteries and Aqueous Zinc-ion Batteries
    Liu, Zhexuan
    Sun, Hemeng
    Qin, Liping
    Cao, Xinxin
    Zhou, Jiang
    Pan, Anqiang
    Fang, Guozhao
    Liang, Shuquan
    CHEMNANOMAT, 2020, 6 (11): : 1553 - 1566
  • [23] Recent advances in graphene based materials as anode materials in sodium-ion batteries
    Kimal Chandula Wasalathilake
    Henan Li
    Li Xu
    Cheng Yan
    Journal of Energy Chemistry, 2020, 42 (03) : 91 - 107
  • [24] Recent advances in graphene based materials as anode materials in sodium-ion batteries
    Wasalathilake, Kimal Chandula
    Li, Henan
    Xu, Li
    Yan, Cheng
    JOURNAL OF ENERGY CHEMISTRY, 2020, 42 : 91 - 107
  • [25] Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries
    Wang, Hao
    Deng, Bangwei
    Ge, Wujie
    Chen, Tao
    Qui, Meizhen
    Peng, Gongchang
    PROGRESS IN CHEMISTRY, 2017, 29 (06) : 683 - 694
  • [26] Recent Advances in Heterostructured Carbon Materials as Anodes for Sodium-Ion Batteries
    Zhao, Rui
    Sun, Ning
    Xu, Bin
    SMALL STRUCTURES, 2021, 2 (12):
  • [27] Recent advances of bismuth based anode materials for sodium-ion batteries
    Sun, Jianguo
    Li, Minchan
    Oh, Jin An Sam
    Zeng, Kaiyang
    Lu, Li
    MATERIALS TECHNOLOGY, 2018, 33 (08) : 563 - 573
  • [28] Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries
    Mishra, Kuldeep
    Yadav, Nitish
    Hashmi, S. A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) : 22507 - 22543
  • [29] Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and High-Performance Sodium-Ion Batteries
    Wei, Xiujuan
    Wang, Xuanpeng
    Tan, Xin
    An, Qinyou
    Mai, Liqiang
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (46)
  • [30] Facile Development of Disused Nickel Foams into Low-Cost and High-Performance Electrode Materials for Sodium-Ion Batteries
    Yu, Lu
    Shao, Lianyi
    Pan, Ruimei
    Guan, Jieduo
    Lin, Jiarui
    Shi, Xiaoyan
    Cai, Junjie
    Sun, Jianchao
    Chen, Chengcheng
    Wu, Yanxue
    Sun, Zhipeng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (28) : 10324 - 10332