Thermal and electrical properties of poly(L-lactide)-graft-multiwalled carbon nanotube composites

被引:83
|
作者
Kim, Hun-Sik [1 ]
Park, Byung Hyun [1 ]
Yoon, Jin-San [1 ]
Jin, Hyoung-Joon [1 ]
机构
[1] Inha Univ, Dept Polymer Sci & Engn, Inchon 402751, South Korea
关键词
biodegradable; carbon nanotubes; multiwalled carbon nanotubes; nanocomposites; poly(L-lactide);
D O I
10.1016/j.eurpolymj.2007.02.025
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The dispersion of the nanometer-sized carbon nanotubes in a polymer matrix leads to a marked improvement in the properties of the polymer. This approach can also be applied to biodegradable synthetic aliphatic polyesters such as poly(L-lactide) (PLLA), which has received a great deal of attention due to environmental concerns. In this study, PLLA was melt compounded with multiwalled carbon nanotubes (MWCNTs). A high degree of dispersion of the MWCNTs in the composites was obtained by grafting PLLA onto the MWCNTs (PLLA-g-MWCNTs). After oxidizing the MWCNTs by treating them with strong acids, they were reacted with L-lactide to produce the PLLA-g-MWCNTs. The morphology of the composite was observed with scanning electron microscopy. The mechanical properties of the PLLA/PLLA-g-MWCNT composite were higher than those of the PLLA/MWCNT composite. The thermal stability of the composites was studied using thermogravimetric analysis and their activation energy during thermal degradation was determined using the Kissinger and Flynn-Wall-Ozawa methods. The activation energy of PLLA/PLLA-g-MWCNT was higher than that of PLLA/MWCNT, which indicates that the composite made with the PLLA-g-MWCNTs was more thermally stable than the composite made with the MWCNTs. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1729 / 1735
页数:7
相关论文
共 50 条
  • [31] Poly(L-lactide)/Poly(D-lactide)/Multiwalled Carbon Nanotubes Nanocomposites: Enhanced Dispersion, Crystallization, Mechanical Properties, and Hydrolytic Degradation
    Dong, Qinglin
    Li, Yi
    Han, Changyu
    Zhang, Xin
    Xu, Kun
    Zhang, Huiliang
    Dong, Lisong
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (06) : 3919 - 3929
  • [32] Poly(L-lactide) - XI. Lactide formation by thermal depolymerisation of poly(L-lactide) in a closed system
    Tsuji, H
    Fukui, I
    Daimon, H
    Fujie, K
    POLYMER DEGRADATION AND STABILITY, 2003, 81 (03) : 501 - 509
  • [33] POLYLACTIDE/MULTIWALLED CARBON NANOTUBE COMPOSITES - SYNTHESIS AND ELECTRICAL PROPERTIES
    Pietrzak, Lukasz
    Jeszka, Jeremiasz K.
    POLIMERY, 2010, 55 (7-8) : 524 - 528
  • [34] Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites
    Li, Jingqing
    Xiao, Peitao
    Li, Hongfei
    Zhang, Yao
    Xue, Feifei
    Luo, Baojing
    Huang, Shaoyong
    Shang, Yingrui
    Wen, Huiying
    Christiansen, Jesper de Claville
    Yu, Donghong
    Jiang, Shichun
    POLYMER CHEMISTRY, 2015, 6 (21) : 3988 - 4002
  • [35] Thermal properties of poly(L-lactide)/calcium carbonate nanocomposites
    Andricic, Branka
    Kovacic, Tonka
    Perinovic, Sanja
    Grgic, Adela
    MACROMOLECULAR SYMPOSIA, 2008, 263 : 96 - 101
  • [36] Influence of Hydroxyapatite Surface Functionalization on Thermal and Biological Properties of Poly(l-Lactide)- and Poly(l-Lactide-co-Glycolide)-Based Composites
    Gazinska, Malgorzata
    Krokos, Anna
    Kobielarz, Magdalena
    Wlodarczyk, Marcin
    Skibinska, Paulina
    Stepak, Bogusz
    Antonczak, Arkadiusz
    Morawiak, Milena
    Plocinski, Przemyslaw
    Rudnicka, Karolina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 21
  • [37] Comparison of thermal, structural and morphological properties of poly(l-lactide) and poly(l-lactide)/hydroxyapatite microspheres for laser sintering processes
    Krokos, Anna
    Gazinska, Malgorzata
    Kryszak, Bartlomiej
    Dzienny, Paulina
    Stepak, Bogusz
    Olejarczyk, Michal
    Gruber, Piotr
    Kwiatkowski, Ryszard
    Bondyra, Agnieszka
    Antonczak, Arkadiusz
    POLIMERY, 2020, 65 (09) : 605 - 612
  • [38] Thermal Properties and Structural Evolution of Poly(L-lactide)/Poly(D-lactide) Blends
    Feng, Lidong
    Bian, Xinchao
    Li, Gao
    Chen, Xuesi
    MACROMOLECULES, 2021, 54 (21) : 10163 - 10176
  • [39] Confinement crystallization of poly(L-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets
    Xin, Shuangyang
    Li, Yi
    Zhao, Hongwei
    Bian, Yijie
    Li, Wu
    Han, Changyu
    Dong, Qinglin
    Ning, Zhigang
    Dong, Lisong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (01) : 379 - 391
  • [40] Control of the Crystalline Morphology of Poly(L-lactide) by Addition of High-Melting-Point Poly(L-lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes
    Zhang, Kai
    Peng, Ji-Kun
    Shi, Yu-Dong
    Chen, Yi-Fu
    Zeng, Jian-Bing
    Wang, Ming
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (30): : 7423 - 7437