Geodesic compatibility and integrability of geodesic flows

被引:15
|
作者
Topalov, P
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] BAS, Dept Differential Equat, Inst Math, Sofia 1113, Bulgaria
关键词
D O I
10.1063/1.1526939
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a natural geometric condition called geodesic compatibility that implies the existence of integrals in involution of the geodesic flow of a pseudo-Riemannian metric. We prove that if two metrics satisfy the condition of geodesic compatibility then we can produce a hierarchy of metrics that also satisfy this condition. A lot of metrics studed in Riemannian and Kahlerian geometry satisfy such conditions. We apply our results for obtaining an infinite family (hierarchy) of completely integrable flows on the complex projective plane CPn. (C) 2003 American Institute of Physics.
引用
收藏
页码:913 / 929
页数:17
相关论文
共 50 条
  • [31] Equicontinuous geodesic flows
    Pries, Christian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1951 - 1963
  • [32] Geodesic equivalence of metrics on surfaces and integrability
    Matveev, VS
    Topalov, PJ
    DOKLADY AKADEMII NAUK, 1999, 367 (06) : 736 - 738
  • [33] GEODESIC FLOWS ARE BERNOULLIAN
    ORNSTEIN, D
    WEISS, B
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (02) : 184 - 198
  • [34] Lorentzian geodesic flows
    Larsen, JC
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 43 (01) : 119 - 170
  • [35] Geodesic Flows in Cosmology
    Bergshoeff, E.
    Chemissany, W.
    Ploegh, A.
    2007 EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, PTS 1-12, 2008, 110
  • [36] Geodesic Information Flows
    Cardoso, M. Jorge
    Wolz, Robin
    Modat, Marc
    Fox, Nick C.
    Rueckert, Daniel
    Ourselin, Sebastien
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 262 - 270
  • [37] GEODESIC COMPATIBILITY: GOLDFISH SYSTEMS
    Piensuk, Worapat
    Yoo-Kong, Sikarin
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 45 - 58
  • [38] GEODESIC FLOWS MODELLED BY EXPANSIVE FLOWS
    Gelfert, Katrin
    Ruggiero, Rafael O.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 61 - 95
  • [39] TOPOLOGICAL OBSTRUCTIONS TO INTEGRABILITY OF GEODESIC-FLOWS ON NON-SIMPLY-CONNECTED MANIFOLDS
    TAIMANOV, IA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1987, 51 (02): : 403 - 409
  • [40] COMPLETE-INTEGRABILITY OF SOME GEODESIC-FLOWS AND THE INTEGRABLE SYSTEMS WITH NONCOMMUTATING INTEGRALS
    BRAILOV, AV
    DOKLADY AKADEMII NAUK SSSR, 1983, 271 (02): : 273 - 276