The purpose of this study is to analytically derive a simple and reasonably accurate expression for the maximum allowable unfairness tolerance of longitudinally stiffened panels in ship structures. The stiffened panels under consideration are typical of those found in the deck, bottom, or side shell of longitudinally stiffened ships. They are assumed to be under still water and wave-induced loads, resulting in predominantly compressive loads. A plate-stiffener combination model is used as representative of the stiffened panel. Ultimate strength is determined based on a strut approach taking into account the effects of initial stiffener deflection and welding residual stresses in the stiff ener. A series of stiffener reliability analyses relative to the ultimate failure strength of the stiffener for varying proportions of column slenderness ratios is carried out. Based on the computed results, a simple expression for predicting the maximum allowable unfairness tolerance of the stiffener is derived. The developed expression, expressed in terms of the stiffener slenderness ratio, can be useful for the assessment of fairness limits of plating with frames, or as a design guideline in ship structures during construction.