Beurling-Fourier Algebras of Compact Quantum Groups: Characters and Finite-Dimensional Representations
被引:2
|
作者:
Franz, Uwe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne Franche Comte, Dept Math Besancon, 16 Route Gray, F-25030 Besancon, FranceUniv Bourgogne Franche Comte, Dept Math Besancon, 16 Route Gray, F-25030 Besancon, France
Franz, Uwe
[1
]
Lee, Hun Hee
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Gwanak Ro 1, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Math, Gwanak Ro 1, Seoul 08826, South KoreaUniv Bourgogne Franche Comte, Dept Math Besancon, 16 Route Gray, F-25030 Besancon, France
Lee, Hun Hee
[2
,3
]
机构:
[1] Univ Bourgogne Franche Comte, Dept Math Besancon, 16 Route Gray, F-25030 Besancon, France
[2] Seoul Natl Univ, Dept Math Sci, Gwanak Ro 1, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Gwanak Ro 1, Seoul 08826, South Korea
In this paper we study weighted versions of Fourier algebras of compact quantum groups. We focus on the spectral aspects of these Banach algebras in two different ways. We first investigate their Gelfand spectrum, which shows a connection to the maximal classical closed subgroup and its complexification. Second, we study specific finite-dimensional representations coming from the complexification of the underlying quantum group. We demonstrate that the weighted Fourier algebras can detect the complexification structure in the special case of SUq(2), whose complexification is the quantum Lorentz group SLq(2, C).