Szeged index of TUC4C8(R) nanotubes

被引:0
|
作者
Heydari, Abbass [1 ]
Taeri, Bijan [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a graph. If (i, j) is an edge between vertices i and i of G and N(i) denote the number of vertices of G lying closer to vertex i than to j and N(j) denote the number of vertices of G lying closer to vertex j than to i, the Szeged index of G is defined as Sz(G) = Sigma((i,j)) N(i)N(j), where (i,j) go over all edges of G. In this paper we derive an exact expression for Szeged index of TUC4C8(R) nanotubes.
引用
收藏
页码:463 / 477
页数:15
相关论文
共 50 条
  • [41] THE SECOND AND SECOND-SUM-CONNECTIVITY INDICES OF TUC4C8(S) NANOTUBES
    Farahani, M. R.
    Siddiqui, H. M. A.
    Baby, Sh.
    Imran, M.
    Siddiqui, M. K.
    JOURNAL OF OPTOELECTRONIC AND BIOMEDICAL MATERIALS, 2016, 8 (03): : 107 - 111
  • [42] COMPUTATION OF THE FIRST EDGE-WIENER INDEX OF TUC4C8(S) NANOTUBE
    Iranmanesh, Ali
    Kafrani, Abolghasem Soltani
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (02) : 311 - 352
  • [43] A new algorithm for computing Hosoya polynomial of TUC4C8(R/S) nanotorus
    Ashrafi, A. R.
    Shabani, H.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2009, 3 (12): : 1309 - 1314
  • [44] Edge-Wiener indices of TUC4C8(S)
    Mahmiani, Anehgaldi
    Khormali, Omid
    Iranmanesh, Ali
    Ahmadi, Ali
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (02): : 256 - 260
  • [45] Topological Compression Factors of 2-Dimensional TUC4C8(R) Lattices and Tori
    Doslic, Tomislav
    Graovac, Ante
    Vukicevic, Damir
    Cataldo, Franco
    Ori, Ottorino
    Iranmanesh, Ali
    Ashrafi, Ali Reza
    Koorepazan-Moftakhar, Fatemeh
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 1 (02): : 73 - 80
  • [46] ON DIAMETER OF TUC4C8(S)[P,Q] LATTICE TITLE
    Iranmanesh, Mohammad A.
    Adamzadeh, A.
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2010, 55 (04): : 143 - 146
  • [47] Topological indices of the subdivision graphs of the nanostructure TUC4C8(R) using M-polynomials
    Swamy, Narahari Narasimha
    Gangappa, Chandan Katigenahalli
    Poojary, Prasanna
    Sooryanarayana, Badekara
    Mudalagiraiah, Nagesh Hadonahalli
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (01): : 265 - 282
  • [48] REVISED SZEGED INDEX OF TC4C8(R) NANOTORUS
    Mehranian, Z.
    Ashrafi, A. R.
    Khadikar, P. V.
    Aziz, S.
    Pandit, S.
    Achrya, H.
    Shaik, B.
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2012, 57 (03): : 59 - 63
  • [49] Szeged Index of HAC5C7[r, p] Nanotubes
    Iranmanesh, A.
    Khormali, O.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (07) : 1670 - 1679
  • [50] AN ALGEBRAIC METHOD FOR COMPUTING SZEGED INDEX OF TC4C8(R/S) NANOTORI
    Ashrafi, Ali Reza
    Yousefi, Shahram
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2009, 4 (03) : 407 - 410