EXPECTED DIMENSIONS OF HIGHER-RANK BRILL-NOETHER LOCI

被引:1
|
作者
Zhang, Naizhen [1 ]
机构
[1] Univ Calif Davis, Dept Math, One Shields Ave, Davis, CA 95616 USA
关键词
CONJECTURE;
D O I
10.1090/proc/13542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new expected dimension formula for certain rank two Brill-Noether loci with fixed special determinant. This answers a question asked by Osserman and also leads to a new and much simpler proof of a theorem in his 2015 work. Our result generalizes the well-known result by Bertram, Feinberg and independently Mukai on expected dimension of rank two Brill-Noether loci with canonical determinant and partially verifies a conjecture (in rank two) of Grzegorczyk and Newstead on coherent systems.
引用
收藏
页码:3735 / 3746
页数:12
相关论文
共 50 条
  • [21] ON THE CLASS OF BRILL-NOETHER LOCI FOR PRYM VARIETIES
    DECONCINI, C
    PRAGACZ, P
    MATHEMATISCHE ANNALEN, 1995, 302 (04) : 687 - 697
  • [22] The osculating cone to special Brill-Noether loci
    Hoff, Michael
    Mayer, Ulrike
    COLLECTANEA MATHEMATICA, 2015, 66 (03) : 387 - 403
  • [23] BRILL-NOETHER LOCI OF RANK 2 VECTOR BUNDLES ON A GENERAL ν-GONAL CURVE
    Choi, Youngook
    Flamini, Flaminio
    Kim, Seonja
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) : 3233 - 3248
  • [24] Geography of Brill-Noether loci for small slopes
    BrambilaPaz, L
    Grzegorczyk, I
    Newstead, PE
    JOURNAL OF ALGEBRAIC GEOMETRY, 1997, 6 (04) : 645 - 669
  • [25] Geometry of Brill-Noether Loci on Prym Varieties
    Hoering, Andreas
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (04) : 785 - 806
  • [26] Brill-Noether loci with ramification at two points
    Montserrat Teixidor-i-Bigas
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 1217 - 1232
  • [27] Brill-Noether loci and the gonality stratification of Mg
    Farkas, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 539 : 185 - 200
  • [28] Brill-Noether loci for divisors on irregular varieties
    Lopes, Margarida Mendes
    Pardini, Rita
    Pirola, Gian Pietro
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (10) : 2033 - 2057
  • [29] The Maximal Rank Conjecture and Rank Two Brill-Noether Theory
    Farkas, Gavril
    Ortega, Angela
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (04) : 1265 - 1295
  • [30] HIGHER RANK BRILL-NOETHER THEORY ON SECTIONS OF K3 SURFACES
    Farkas, Gavril
    Ortega, Angela
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (07)