Accurate Conformation-Dependent Molecular Electrostatic Potentials for High-Throughput In Silico Drug Discovery

被引:98
|
作者
Puranen, J. Santeri [1 ]
Vainio, Mikko J. [1 ]
Johnson, Mark S. [1 ]
机构
[1] Abo Akad Univ, Struct Bioinformat Lab, Dept Biochem & Pharm, FI-20520 Turku, Finland
基金
芬兰科学院;
关键词
partial charges; molecular electrostatic potential; conformation dependent; polarizable; electronegativity equalization; ELECTRONEGATIVITY EQUALIZATION METHOD; DERIVING ATOMIC CHARGES; EFFICIENT GENERATION; AM1-BCC MODEL; HARDNESS; PARAMETERIZATION; VALIDATION; ALGORITHM; DENSITY; SMILES;
D O I
10.1002/jcc.21460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The atom-centered partial charges-approximation is commonly used in current molecular modeling tools as a computationally inexpensive alternative to quantum mechanics for modeling electrostatics. Even today, the use of partial charges remains useful despite significant advances in improving the efficiency of oh initio methods. Here, we report on new parameters for the EEM and SEKEEM electronegativity equalization-based methods for rapidly determining partial charges that will accurately model the electrostatic potential of flexible molecules. The developed parameters cover most pharmaceutically relevant chemistries, and charges obtained using these parameters reproduce the B3LYP/cc-pVTZ reference electrostatic potential of a set of FDA-approved drug molecules at best to an average accuracy of 13 +/- 4 kJ mol(-1); thus, equipped with these parameters electronegativity equalization-based methods rival the current best non-quantum mechanical methods, such as AM1-BCC, in accuracy, yet incur a lower computational cost. Software implementations of EEM and SEKEEM, including the developed parameters, are included in the conformer-generation tool BALLOON, available free of charge at http://web.abo.fi/fak/mnf/bkf/research/johnson/software.php. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 1722-1732, 2010
引用
收藏
页码:1722 / 1732
页数:11
相关论文
共 50 条
  • [21] High-throughput molecular pathology in human tissues as a method for driving drug discovery
    Beesley, J
    Roush, C
    Baker, L
    DRUG DISCOVERY TODAY, 2004, 9 (04) : 182 - 189
  • [22] High-throughput screening in combinatorial chemistry for drug discovery
    Krstulovic, AM
    JOURNAL OF CHROMATOGRAPHY B, 1999, 725 (01): : 1 - 1
  • [23] High-throughput gene expression analysis for drug discovery
    Lennon, GG
    DRUG DISCOVERY TODAY, 2000, 5 (02) : 59 - 66
  • [24] High-throughput multiplexed capillary electrophoresis in drug discovery
    Pang, HM
    Kenseth, J
    Coldiron, S
    DRUG DISCOVERY TODAY, 2004, 9 (24) : 1072 - 1080
  • [25] High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery
    Yang, Xiaonan
    Kui, Ling
    Tang, Min
    Li, Dawei
    Wei, Kunhua
    Chen, Wei
    Miao, Jianhua
    Dong, Yang
    FRONTIERS IN GENETICS, 2020, 11
  • [26] Accelerating drug discovery by high-throughput combinatorial synthesis
    Banville, SC
    Zuckermann, RN
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON LABORATORY AUTOMATION AND ROBOTICS 1996, 1997, : 77 - 92
  • [27] High-Throughput crystallographic fragment screening for drug discovery
    Metz, Alexander
    Huschinann, Franziska
    Schiebel, Johannes
    Mueller, Utiye
    Weiss, Manfred
    Heine, Andreas
    Melte, Gerhard
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E24 - E24
  • [28] High-throughput kinase profiling as a platform for drug discovery
    David M. Goldstein
    Nathanael S. Gray
    Patrick P. Zarrinkar
    Nature Reviews Drug Discovery, 2008, 7 : 391 - 397
  • [29] Modern analytical approaches to high-throughput drug discovery
    Gomez-Hens, A.
    Aguilar-Caballos, M. P.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2007, 26 (03) : 171 - 182
  • [30] High-throughput screening approaches to TB drug discovery
    Stanley, Sarah A.
    Grant, Sarah S.
    Barczak, Amy K.
    Hung, Deborah T.
    TUBERCULOSIS, 2013, 93 (01) : 110 - 110