Lie-point symmetries of the discrete Liouville equation

被引:12
|
作者
Levi, D. [1 ,2 ]
Martina, L. [3 ,4 ]
Winternitz, P. [1 ,2 ,5 ,6 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Sez INFN Roma Tre, I-00146 Rome, Italy
[3] Univ Salento, Dipartimento Matemat & Fis, I-73100 Lecce, Italy
[4] Sez INFN Lecce, I-73100 Lecce, Italy
[5] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[6] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebras of Lie groups; integrable systems; partial differential equations; discretization procedures for PDEs;
D O I
10.1088/1751-8113/48/2/025204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Liouville equation is well known to be linearizable by a point transformation. It has an infinite dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras. We show that it is not possible to discretize the equation keeping the entire symmetry algebra as point symmetries. We do however construct a difference system approximating the Liouville equation that is invariant under the maximal finite subgroup SLx(2, R) circle times SLy(2, R). The invariant scheme is an explicit one and provides a much better approximation of exact solutions than a comparable standard (noninvariant) scheme and also than a scheme invariant under an infinite dimensional group of generalized symmetries.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Lie point symmetries classification of the mixed Li,nard-type equation
    Tiwari, Ajey K.
    Pandey, S. N.
    Senthilvelan, M.
    Lakshmanan, M.
    NONLINEAR DYNAMICS, 2015, 82 (04) : 1953 - 1968
  • [42] Lie point symmetries of difference equations for the nonlinear sine-Gordon equation
    Yildirim, Ozgur
    Caglak, Sumeyra
    PHYSICA SCRIPTA, 2019, 94 (08)
  • [43] Lie point symmetries classification of the mixed Liénard-type equation
    Ajey K. Tiwari
    S. N. Pandey
    M. Senthilvelan
    M. Lakshmanan
    Nonlinear Dynamics, 2015, 82 : 1953 - 1968
  • [44] Potential systems of a Buckley–Leverett equation: Lie point symmetries and conservation laws
    M. S. Bruzón
    A. P. Márquez
    E. Recio
    T. M. Garrido
    R. de la Rosa
    Journal of Mathematical Chemistry, 2020, 58 : 831 - 840
  • [45] Discrete analogues of the Liouville equation
    Adler, VE
    Startsev, SY
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (02) : 1484 - 1495
  • [46] Discrete analogues of the Liouville equation
    V. E. Adler
    S. Ya. Startsev
    Theoretical and Mathematical Physics, 1999, 121 : 1484 - 1495
  • [47] Lie Symmetries of Inviscid Burgers’ Equation
    Mehdi Nadjafikhah
    Advances in Applied Clifford Algebras, 2009, 19 : 101 - 112
  • [48] SYMMETRIES AND LIE ALGEBRA OF RAMANUJAN EQUATION
    Halder, Amlan K.
    Seshadri, Rajeswari
    Sinuvasan, R.
    Leach, P.G.L.
    arXiv, 2023,
  • [49] LIE ALGEBRA OF THE SYMMETRIES OF BURGERS EQUATION
    田畴
    Science Bulletin, 1987, (22) : 1576 - 1577
  • [50] Lie Symmetries of Inviscid Burgers' Equation
    Nadjafikhah, Mehdi
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (01) : 101 - 112