Decomposition and stability of linear singularly perturbed systems with two small parameters

被引:0
|
作者
Osypova, O. V. [1 ]
Pertsov, A. S. [1 ]
Cherevko, I. M. [1 ]
机构
[1] Yuriy Fedkovych Chernivtsi Natl Univ, 2 Kotsjubynskyi Str, UA-58012 Chernovtsy, Ukraine
关键词
singularly perturbed system; decomposition; splitting; stability; integral manifold; MANIFOLDS;
D O I
10.15330/cmp.13.1.15-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the domain W = {(t, epsilon(1), epsilon(2)) : t is an element of R, epsilon(1) > 0, epsilon(2) > 0}, we consider a linear singularly perturbed system with two small parameters. {(x) over dot(0) = A(00)x(0) + A(01)x(1) + A(02)x(2), epsilon(1)(x) over dot(1) = A(10)x(0) + A(11)x(1) + A(12)x(2), epsilon(1)epsilon(2)(x) over dot(2) = A(20)x(0) + A(21)x(1) + A(22)x(2), where x(0) is an element of Rn-0,Rn- x(1) is an element of R-n1, x(2) is an element of R-n2. In this paper, schemes of decomposition and splitting of the system into independent subsystems by using the integral manifolds method of fast and slow variables are investigated. We give the conditions under which the reduction principle is truthful to study the stability of zero solution of the original system.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [41] Asymptotics of the solution to a singularly perturbed timeoptimal control problem with two small parameters
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (02): : 88 - 101
  • [42] Singularly perturbed Markov chains with two small parameters: A matched asymptotic expansion
    Liu, QG
    Yin, G
    Zhang, Q
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (01) : 281 - 309
  • [43] On a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (SUPPL 1) : 34 - 50
  • [44] On a Singularly Perturbed Time-Optimal Control Problem with Two Small Parameters
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 34 - 50
  • [45] UNIFORM ASYMPTOTIC STABILITY OF LINEAR TIME-VARYING SINGULARLY PERTURBED SYSTEMS
    JAVID, SH
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1978, 305 (01): : 27 - 37
  • [46] Controllability conditions of linear singularly perturbed systems with small state and input delays
    Valery Y. Glizer
    Mathematics of Control, Signals, and Systems, 2016, 28
  • [47] Stabilisation of polytopic singularly perturbed linear systems
    Malloci, Ivan
    Daafouz, Jamal
    INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (02) : 135 - 142
  • [48] Reachable sets to singularly perturbed linear systems
    Goncharova, E. V.
    Ovseevich, A. I.
    DOKLADY MATHEMATICS, 2009, 80 (01) : 595 - 598
  • [49] STOCHASTIC CONTROL OF LINEAR SINGULARLY PERTURBED SYSTEMS
    HADDAD, AH
    KOKOTOVIC, PV
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (05) : 815 - 821
  • [50] Synchronization in networks of linear singularly perturbed systems
    Ben Rejeb, Jihene
    Morarescu, Irinel-Constantin
    Daafouz, Jamal
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4293 - 4298