Analysis of Energy Quantization Effects on Single-Electron Transistor Circuits

被引:9
|
作者
Dan, Surya Shankar [1 ]
Mahapatra, Santanu [1 ]
机构
[1] Indian Inst Sci, Nanoscale Device Res Lab, Ctr Elect Design & Technol, Bangalore 560012, Karnataka, India
关键词
Coulomb blockade; energy quantization; Monte Carlo (MC) simulation; noise margin; orthodox theory; single-electron transistor (SET); DEVICES;
D O I
10.1109/TNANO.2009.2022833
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the effects of energy quantization on different single-electron transistor (SET) circuits (logic inverter, current-biased circuits, and hybrid MOS-SET circuits) are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantizationmainly increases the Coulomb blockade area and Coulomb blockade oscillation periodicity, and thus, affects the SET circuit performance. A new model for the noise margin of the SET inverter is proposed, which includes the energy quantization effects. Using the noise margin as a metric, the robustness of the SET inverter is studied against the effects of energy quantization. An analytical expression is developed, which explicitly defines the maximum energy quantization (termed as "quantization threshold") that an SET inverter can withstand before its noise margin falls below a specified tolerance level. The effects of energy quantization are further studied for the current-biased negative differential resistance (NDR) circuit and hybrid SETMOS circuit. A new model for the conductance of NDR characteristics is also formulated that explains the energy quantization effects.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [31] Sketched oxide single-electron transistor
    Guanglei Cheng
    Pablo F. Siles
    Feng Bi
    Cheng Cen
    Daniela F. Bogorin
    Chung Wung Bark
    Chad M. Folkman
    Jae-Wan Park
    Chang-Beom Eom
    Gilberto Medeiros-Ribeiro
    Jeremy Levy
    Nature Nanotechnology, 2011, 6 : 343 - 347
  • [32] Quantum conductance of the single-electron transistor
    Wang, XH
    PHYSICAL REVIEW B, 1997, 55 (19): : 12868 - 12871
  • [33] Thermal Conductance of a Single-Electron Transistor
    Dutta, B.
    Peltonen, J. T.
    Antonenko, D. S.
    Meschke, M.
    Skvortsov, M. A.
    Kubala, B.
    Koenig, J.
    Winkelmann, C. B.
    Courtois, H.
    Pekola, J. P.
    PHYSICAL REVIEW LETTERS, 2017, 119 (07)
  • [34] Broadband single-electron tunneling transistor
    Visscher, EH
    Lindeman, J
    Verbrugh, SM
    Hadley, P
    Mooij, JE
    vanderVleuten, W
    APPLIED PHYSICS LETTERS, 1996, 68 (14) : 2014 - 2016
  • [35] The Kondo effect in a single-electron transistor
    Goldhaber-Gordon, D
    Göres, J
    Shtrikman, H
    Mahalu, D
    Meirav, U
    Kastner, MA
    KONDO EFFECT AND DEPHASING IN LOW-DIMENSIONAL METALLIC SYSTEMS, 2001, 50 : 163 - 170
  • [36] Sketched oxide single-electron transistor
    Cheng, Guanglei
    Siles, Pablo F.
    Bi, Feng
    Cen, Cheng
    Bogorin, Daniela F.
    Bark, Chung Wung
    Folkman, Chad M.
    Park, Jae-Wan
    Eom, Chang-Beom
    Medeiros-Ribeiro, Gilberto
    Levy, Jeremy
    NATURE NANOTECHNOLOGY, 2011, 6 (06) : 343 - 347
  • [37] Cotunneling at resonance for the single-electron transistor
    Konig, J
    Schoeller, H
    Schon, G
    PHYSICAL REVIEW LETTERS, 1997, 78 (23) : 4482 - 4485
  • [38] Effective capacitance of a single-electron transistor
    Laakso, M. A.
    Ojanen, T.
    Heikkila, T. T.
    PHYSICAL REVIEW B, 2008, 77 (23):
  • [39] Interference effects on the transport characteristics of a benzene single-electron transistor
    Darau, D.
    Begemann, G.
    Donarini, A.
    Grifoni, M.
    PHYSICAL REVIEW B, 2009, 79 (23):
  • [40] Quantum-fluctuation effects on the thermopower of a single-electron transistor
    Kubala, Bjoern
    Koenig, Juergen
    PHYSICAL REVIEW B, 2006, 73 (19):