Fractional Orlicz-Sobolev embeddings

被引:37
|
作者
Alberico, Angela [1 ]
Cianchi, Andrea [2 ]
Pick, Lubos [3 ]
Slavikova, Lenka [3 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
[4] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Fractional Orlicz-Sobolev spaces; Sobolev embeddings; Hardy inequalities; Orlicz spaces; Rearrangement-invariant spaces; GAGLIARDO-NIRENBERG INEQUALITIES; LIMITING EMBEDDINGS; INTEGRAL-OPERATORS; ORDER SOBOLEV; REGULARITY; THEOREM; SPACES; IMBEDDINGS; EXTENSION; BOUNDARY;
D O I
10.1016/j.matpur.2020.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal Orlicz target space is exhibited for embeddings of fractional-order Orlicz-Sobolev spaces in R-n. An improved embedding with an Orlicz-Lorentz target space, which is optimal in the broader class of all rearrangement-invariant spaces, is also established. Both spaces of order s is an element of (0, 1), and higher-order spaces are considered. Related Hardy type inequalities are proposed as well. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:216 / 253
页数:38
相关论文
共 50 条
  • [31] ON A PROPERTY OF ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    LECTURE NOTES IN MATHEMATICS, 1984, 1107 : 102 - 105
  • [32] ORLICZ-SOBOLEV CAPACITY OF BALLS
    Futamura, T.
    Mizuta, Y.
    Ohno, T.
    Shimomura, T.
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 543 - 553
  • [33] ON WEIGHTED ORLICZ-SOBOLEV INEQUALITIES
    Anoop, T., V
    Das, Ujjal
    Roy, Subhajit
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (10) : 2849 - +
  • [34] On F-Sobolev and Orlicz-Sobolev inequalities
    Kang, Cholryong
    Wang, Fengyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (04) : 659 - 667
  • [35] On F-Sobolev and Orlicz-Sobolev inequalities
    Cholryong Kang
    Fengyu Wang
    Frontiers of Mathematics in China, 2009, 4 : 659 - 667
  • [36] Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
    Bahrouni, Sabri
    Salort, Ariel M.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [37] Ground State Solutions for a Nonlocal System in Fractional Orlicz-Sobolev Spaces
    El-Houari, Hamza
    Moussa, Hicham
    Chadli, Lalla Saadia
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022
  • [38] A new class of fractional Orlicz-Sobolev space and singular elliptic problems
    Boujemaa, Hamza
    Oulgiht, Badr
    Ragusa, Maria Alessandra
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [39] MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Xiang, Mingqi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (02): : 287 - 303
  • [40] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47