Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation

被引:21
|
作者
Zhang, Jingjing [1 ,2 ]
Ma, Jiaxiang [1 ]
Liu, Dongmei [1 ]
Liu, Dongqing [1 ]
Han, Yu [1 ]
Xu, Ying [4 ]
Cui, Fuyi [3 ]
Wang, Wei [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Shenzhen Water Grp Co Ltd, Res & Dev Ctr, Shenzhen 518000, Peoples R China
[3] Chongqing Univ, Coll Urban Construct & Environm Engn, Chongqing 400000, Peoples R China
[4] Zhengzhou Univ, Sch Ecol & Environm, Zhengzhou 450000, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; GENERATION; MEMBRANE;
D O I
10.1039/d2ta00838f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, a localized interfacial activation strategy is proposed to promote solar evaporation. Considering that surfactants can weaken water interaction but on the other hand block evaporation due to physical coverage, surfactant-like graphene oxide (GO) and polydopamine (PDA) are assembled to be an interconnected porous photothermal matrix (IPPM) via an acid-assembly method. Hence, the activation interface is physically localized at the micro-frame surface of IPPM (composed of an rGO frame and PDA with an outward-facing indole structure), which can effectively decrease the interaction energy of interfacial water molecules. Meanwhile, the interconnected water channels in the IPPM ensure adequate water supplementation for interfacial evaporation. Consequently, the IPPM not only displays a high performance of 2.2 kg m(-2) h(-1) under 1 sun irradiation, but in particular exhibits an unparalleled advantage with a flux of over 10 kg m(-2) h(-1) under concentrated irradiation below 5 sun. The present development takes a new step towards the practical application of solar evaporation in the future.
引用
收藏
页码:10548 / 10556
页数:9
相关论文
共 50 条
  • [31] Effective solar-driven interfacial water evaporation-assisted adsorption of organic pollutants by a activated porous carbon material
    Li, Ning
    Ma, Yong
    Chang, Qing
    Xue, Chao-Rui
    Li, Ying
    Zheng, Wen-Jing
    Liu, Lei
    Fan, Xiang-Qian
    Hu, Sheng-Liang
    NEW CARBON MATERIALS, 2023, 38 (05) : 925 - 935
  • [32] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    Separation and Purification Technology, 2021, 264
  • [33] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 264
  • [34] A bionic solar-driven interfacial evaporation system with a photothermal-photocatalytic hydrogel for VOC removal during solar distillation
    Mo, Huatao
    Wang, Ying
    WATER RESEARCH, 2022, 226
  • [35] Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment
    Lu, Yi
    Zhang, Hao
    Fan, Deqi
    Chen, Zupeng
    Yang, Xiaofei
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 423
  • [36] Bioinspired Photothermal Metal-Organic Framework Cocrystal with Ultra-Fast Water Transporting Channels for Solar-Driven Interfacial Water Evaporation
    Wang, Xu
    Zhao, Chong
    Yang, Mingyu
    Baek, Jae-Hoon
    Meng, Zheng
    Sun, Bin
    Yuan, Aihua
    Baek, Jong-Beom
    He, Xiao
    Jiang, Yi
    Zhu, Meifang
    SMALL, 2025, 21 (01)
  • [37] Facile Synthesis of Vertically Arranged CNTs for Efficient Solar-Driven Interfacial Water Evaporation
    Su, Lifen
    Liu, Xiaoyu
    Li, Xu
    Yang, Bin
    Wu, Bin
    Xia, Ru
    Qian, Jiasheng
    Zhou, Jianhua
    Miao, Lei
    ACS OMEGA, 2022, 7 (50): : 47349 - 47356
  • [38] Spongy polyelectrolyte hydrogel with Janus porous for solar-driven interfacial evaporation and sustainable seawater desalination
    Luo, Jiarong
    Tian, Zhuoyue
    Chen, Juanli
    Wen, Xiufang
    Cai, Kui
    Yang, Zhensheng
    Fang, Jing
    Li, Hao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 700
  • [39] Macroporous 3D MXene architecture for solar-driven interfacial water evaporation
    Ju, Maomao
    Yang, Yawei
    Zhao, Jianqiu
    Yin, Xingtian
    Wu, Yutao
    Que, Wenxiu
    JOURNAL OF ADVANCED DIELECTRICS, 2019, 9 (06)
  • [40] PTFE-based composite nanofiber membranes for solar-driven interfacial water evaporation
    Yu, Mengmeng
    Jiang, Guohua
    Demir, Muslum
    Sun, Yanfang
    Wang, Rui
    Liu, Tianqi
    MATERIALS TODAY COMMUNICATIONS, 2022, 32