Deflection of coronal mass ejection in the interplanetary medium

被引:142
|
作者
Wang, YM [1 ]
Shen, CL [1 ]
Wang, S [1 ]
Ye, PZ [1 ]
机构
[1] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1023/B:SOLA.0000043576.21942.aa
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A solar coronal mass ejection (CME) is a large-scale eruption of plasma and magnetic fields from the Sun. It is believed to be the main source of strong interplanetary disturbances that may cause intense geomagnetic storms. However, not all front-side halo CMEs can encounter the Earth and produce geomagnetic storms. The longitude distribution of the Earth-encountered front-side halo CMEs (EFHCMEs) has not only an east-west (E-W) asymmetry (Wang et al., 2002), but also depends on the EFHCMEs' transit speeds from the Sun to 1 AU. The faster the EFHCMEs are, the more westward does their distribution shift, and as a whole, the distribution shifts to the west. Combining the observational results and a simple kinetic analysis, we believe that such E-W asymmetry appearing in the source longitude distribution is due to the deflection of CMEs' propagation in the interplanetary medium. Under the effect of the Parker spiral magnetic field, a fast CME will be blocked by the background solar wind ahead and deflected to the east, whereas a slow CME will be pushed by the following background solar wind and deflected to the west. The deflection angle may be estimated according to the CMEs' transit speed by using a kinetic model. It is shown that slow CMEs can be deflected more easily than fast ones. This is consistent with the observational results obtained by Zhang et al. (2003), that all four Earth-encountered limb CMEs originated from the east. On the other hand, since the most of the EFHCMEs are fast events, the range of the longitude distribution given by the theoretical model is E40degrees, W70degrees, which is well consistent with the observational results (E40degrees, W75degrees).
引用
收藏
页码:329 / 343
页数:15
相关论文
共 50 条
  • [21] Flux rope model of the 2003 October 28-30 coronal mass ejection and interplanetary coronal mass ejection
    Krall, J
    Yurchyshyn, VB
    Slinker, S
    Skoug, RM
    Chen, J
    ASTROPHYSICAL JOURNAL, 2006, 642 (01): : 541 - 553
  • [22] Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations
    Mulligan, T
    Russell, CT
    Anderson, BJ
    Lohr, DA
    Rust, D
    Toth, BA
    Zanetti, LJ
    Acuna, MH
    Lepping, RP
    Gosling, JT
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1999, 104 (A12) : 28217 - 28223
  • [23] Proton beam velocity distributions in an interplanetary coronal mass ejection
    Marsch, E.
    Yao, S.
    Tu, C. -Y.
    ANNALES GEOPHYSICAE, 2009, 27 (02) : 869 - 875
  • [24] Solar cycle variation of interplanetary coronal mass ejection latitudes
    P. X. Gao
    K. J. Li
    Journal of Astrophysics and Astronomy, 2010, 31 : 165 - 175
  • [25] Observations of suprathermal electron conics in an interplanetary coronal mass ejection
    Feldman, WC
    Skoug, RM
    Gosling, JT
    McComas, DJ
    Tokar, RL
    Burlaga, LF
    Ness, NF
    Smith, CW
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (16) : 2613 - 2616
  • [26] Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection
    Takahashi, Takuya
    Shibata, Kazunari
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 837 (02)
  • [27] MAVEN observations of the response of Mars to an interplanetary coronal mass ejection
    Jakosky, B. M.
    Grebowsky, J. M.
    Luhmann, J. G.
    Connerney, J.
    Eparvier, F.
    Ergun, R.
    Halekas, J.
    Larson, D.
    Mahaffy, P.
    McFadden, J.
    Mitchell, D. F.
    Schneider, N.
    Zurek, R.
    Bougher, S.
    Brain, D.
    Ma, Y. J.
    Mazelle, C.
    Andersson, L.
    Andrews, D.
    Baird, D.
    Baker, D.
    Bell, J. M.
    Benna, M.
    Chaffin, M.
    Chamberlin, P.
    Chaufray, Y. -Y.
    Clarke, J.
    Collinson, G.
    Combi, M.
    Crary, F.
    Cravens, T.
    Crismani, M.
    Curry, S.
    Curtis, D.
    Deighan, J.
    Delory, G.
    Dewey, R.
    DiBraccio, G.
    Dong, C.
    Dong, Y.
    Dunn, P.
    Elrod, M.
    England, S.
    Eriksson, A.
    Espley, J.
    Evans, S.
    Fang, X.
    Fillingim, M.
    Fortier, K.
    Fowler, C. M.
    SCIENCE, 2015, 350 (6261)
  • [28] Influence of coronal mass ejection interaction on propagation of interplanetary shocks
    Manoharan, PK
    Gopalswamy, N
    Yashiro, S
    Lara, A
    Michalek, G
    Howard, RA
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A6)
  • [29] Evolution of coronal mass ejection/shock system in interplanetary space
    Xiang, CQ
    Wei, FS
    Feng, XS
    Wang, JF
    SPACE WEATHER, 2005, 36 (12): : 2308 - 2312
  • [30] Solar Cycle Variation of Interplanetary Coronal Mass Ejection Latitudes
    Gao, P. X.
    Li, K. J.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2010, 31 (03) : 165 - 175