A differential evolution algorithm for estimating mobile channel parameters α - η - μ

被引:2
|
作者
Lemos, Carlos Paula [1 ]
Paschoarelli Veiga, Antonio Claudio [2 ]
Fasolo, Sandro Adriano [3 ]
机构
[1] Fed Inst Triangulo Mineiro, Av B 155, BR-38700000 Patos De Minas, MG, Brazil
[2] Univ Fed Uberlandia, Av Joao Naves Avila 2121, BR-38400902 Uberlandia, MG, Brazil
[3] Univ Fed Sao Joao del Rei, Rod MG 443,KM 7, BR-36420000 Ouro Branco, MG, Brazil
关键词
alpha - eta - mu fading channel; Differential evolution; Maximum likelihood estimation; Numerical optimization; Parameter estimation; Random generators; GLOBAL OPTIMIZATION; KAPPA-MU; MODEL;
D O I
10.1016/j.eswa.2020.114357
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The statistical modeling of mobile radio signals requires the estimation of parameters that describe the probability distribution that hypothetically models this channel, so that this probabilistic model guarantees a good adjustment to the experimental data. This article proposes the use of differential evolution (DE) algorithms for estimating parameters of the alpha - eta - mu. fading channel, and to compare these to the traditional method of moments (MM) and maximum likelihood estimation (MLE) method. These traditional parameter estimation methods use nonlinear numerical methods, and the solution, if found, may be the optimal value, an approximation of the optimal value, or a local maximum. The authors demonstrate through comparative experiments using the MM and the MLE method that the DE algorithm for the proposed estimation demands a lower run time. In addition, it presents the error performance measured by the mean square error (MSE), near or above, as well as high robustness measured by the statistical analysis. Essentially, this algorithm always finds acceptable physical estimations with a good goodness of fit to experimental data. This estimating DE algorithm along with its proposed fitness function are original contributions of this paper. The received signal samples, used in the experiments of this paper, were randomly generated by the alpha - eta - mu. fading simulator, which is another contribution of this paper. This proposed alpha - eta - mu. fading simulator is based on the Clarke and Gans fading model and expands the generation range of current simulators, from mu integer multiples of 0.5, to mu integer multiples of 0.25.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Tuning chess evaluation function parameters using differential evolution algorithm
    Bǒkovíc, Borko
    Informatica (Ljubljana), 2011, 35 (02) : 283 - 284
  • [42] AN INSTRUMENT FOR ESTIMATING THE PARAMETERS OF A DIGITAL CHANNEL
    ZOLOTAREV, YM
    ZORYEV, AD
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1980, 34-5 (08) : 53 - 55
  • [43] Node distribution optimization in mobile sensor networks based on differential evolution algorithm
    Jin, Li-Zhong
    Chang, Gui-Ran
    Jia, Jie
    Kongzhi yu Juece/Control and Decision, 2010, 25 (12): : 1857 - 1860
  • [44] A differential evolution based approach for estimating minimal model parameters from IVGTT data
    Ghosh, Subhojit
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 46 : 51 - 60
  • [45] Estimating the parameters of stochastic differential equations
    Hurn, AS
    Lindsay, KA
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 48 (4-6) : 373 - 384
  • [46] A Differential Evolution Algorithm for Restrictive Channel Routing Problem in VLSI Circuit Design
    Vijayakumar, S.
    Sudhakar, J. Goldwyn
    Muthukumar, G. G.
    Victoire, T. Aruldoss Albert
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1257 - 1262
  • [47] Multi-step evolution strategy based DNA generic algorithm for parameters estimating
    Zhang, Duan
    Xia, Yanling
    He, Xiongxiong
    Li, Sheng
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 828 - 835
  • [48] Synthesis of linear sparse arrays based on dynamic parameters differential evolution algorithm
    Wang, Xujian
    Yao, Minli
    Dai, Dingcheng
    Zhang, Fenggan
    IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13 (09) : 1491 - 1497
  • [49] Tunneling parameters optimization based on multi-objective differential evolution algorithm
    Hongyuan Wang
    Jingcheng Wang
    Yaqi Zhao
    Haotian Xu
    Soft Computing, 2021, 25 : 3637 - 3656
  • [50] PARAMETERS ESTIMATION OF RIVER WATER QUALITY MODEL USING A DIFFERENTIAL EVOLUTION ALGORITHM
    Xue, Hongqin
    Liu, Xiaodong
    Xiong, Yong
    Gu, Li
    Yang, Ting
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (02): : 749 - 756